{"title":"界面和基体强度对单向CFRP复合材料横向抗拉强度的影响","authors":"Pengfei Bu, W. Ruan, Jiangong Liu","doi":"10.1088/1361-651X/acde93","DOIUrl":null,"url":null,"abstract":"To illustrate the effect of interface and matrix on the transverse mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP) composites, a calculation method for the transverse tensile strength of UD-CFRP considering the interface cracking process was proposed. The effect of interface crack on the composite stress field was considered based on the representative volume element model with a crack interface, and the crack propagation behavior of interface was simulated by the Benzeggagh-Kenane criterion. The transverse tensile strength of unidirectional T300/BSL914C composites was studied using the theoretical method and finite element (FE) model with random fiber distribution. The theoretical results agreed well with the FE results and the relationships between composite strength, interface strength and matrix strength were provided by the theoretical method. The results show that the interface could be divided into three types according to the strength ratio of interface and matrix, including weakest interface, weak interface, and strong interface. When the interface belongs to the weakest or strong interface, the transverse tensile strength is unaffected by the interface strength and it increases linearly with the increase of matrix strength. When the interface belongs to the weak interface, the transverse tensile strength increases linearly with the increase of interface strength and it is unaffected by matrix strength.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of interface and matrix strength on transverse tensile strength of unidirectional CFRP composite\",\"authors\":\"Pengfei Bu, W. Ruan, Jiangong Liu\",\"doi\":\"10.1088/1361-651X/acde93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To illustrate the effect of interface and matrix on the transverse mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP) composites, a calculation method for the transverse tensile strength of UD-CFRP considering the interface cracking process was proposed. The effect of interface crack on the composite stress field was considered based on the representative volume element model with a crack interface, and the crack propagation behavior of interface was simulated by the Benzeggagh-Kenane criterion. The transverse tensile strength of unidirectional T300/BSL914C composites was studied using the theoretical method and finite element (FE) model with random fiber distribution. The theoretical results agreed well with the FE results and the relationships between composite strength, interface strength and matrix strength were provided by the theoretical method. The results show that the interface could be divided into three types according to the strength ratio of interface and matrix, including weakest interface, weak interface, and strong interface. When the interface belongs to the weakest or strong interface, the transverse tensile strength is unaffected by the interface strength and it increases linearly with the increase of matrix strength. When the interface belongs to the weak interface, the transverse tensile strength increases linearly with the increase of interface strength and it is unaffected by matrix strength.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651X/acde93\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651X/acde93","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of interface and matrix strength on transverse tensile strength of unidirectional CFRP composite
To illustrate the effect of interface and matrix on the transverse mechanical properties of unidirectional carbon fiber reinforced polymer (UD-CFRP) composites, a calculation method for the transverse tensile strength of UD-CFRP considering the interface cracking process was proposed. The effect of interface crack on the composite stress field was considered based on the representative volume element model with a crack interface, and the crack propagation behavior of interface was simulated by the Benzeggagh-Kenane criterion. The transverse tensile strength of unidirectional T300/BSL914C composites was studied using the theoretical method and finite element (FE) model with random fiber distribution. The theoretical results agreed well with the FE results and the relationships between composite strength, interface strength and matrix strength were provided by the theoretical method. The results show that the interface could be divided into three types according to the strength ratio of interface and matrix, including weakest interface, weak interface, and strong interface. When the interface belongs to the weakest or strong interface, the transverse tensile strength is unaffected by the interface strength and it increases linearly with the increase of matrix strength. When the interface belongs to the weak interface, the transverse tensile strength increases linearly with the increase of interface strength and it is unaffected by matrix strength.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.