pet改性沥青混凝土蠕变性能研究

IF 1 Q4 ENGINEERING, CIVIL
H. Taherkhani, M. Arshadi
{"title":"pet改性沥青混凝土蠕变性能研究","authors":"H. Taherkhani, M. Arshadi","doi":"10.7508/CEIJ.2018.02.003","DOIUrl":null,"url":null,"abstract":"This study has investigated the creep properties of asphaltic concrete modified with different dosages of waste polyethylene terephthalate (PET) in two different ranges of size. Uniaxial dynamic creep test at 40°C was conducted on the cylindrical specimens of the mixtures. The load was applied in two different frequencies of 0.5 and 5Hz. Creep test results showed that the accumulated strain under dynamic loading increased with increasing PET content, with lower values for the mixtures containing finer PET particles. Moreover, it was found that the accumulated strain under the loading with higher frequency was more than that under lower frequency, with higher sensitivity to frequency for the mixtures containing finer PET. The results of dynamic creep tests were used for determination of the constants of a three stage model. The linear creep slope in the second region of the creep curve and the flow number showed that the increase of PET content and size results in decrease of permanent deformation resistance. However, the mixtures modified with 4% of fine and coarse PET particles had the highest loading cycles at the end of primary creep region, where most of the strain was recoverable.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigating the Creep Properties of PET-Modified Asphalt Concrete\",\"authors\":\"H. Taherkhani, M. Arshadi\",\"doi\":\"10.7508/CEIJ.2018.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study has investigated the creep properties of asphaltic concrete modified with different dosages of waste polyethylene terephthalate (PET) in two different ranges of size. Uniaxial dynamic creep test at 40°C was conducted on the cylindrical specimens of the mixtures. The load was applied in two different frequencies of 0.5 and 5Hz. Creep test results showed that the accumulated strain under dynamic loading increased with increasing PET content, with lower values for the mixtures containing finer PET particles. Moreover, it was found that the accumulated strain under the loading with higher frequency was more than that under lower frequency, with higher sensitivity to frequency for the mixtures containing finer PET. The results of dynamic creep tests were used for determination of the constants of a three stage model. The linear creep slope in the second region of the creep curve and the flow number showed that the increase of PET content and size results in decrease of permanent deformation resistance. However, the mixtures modified with 4% of fine and coarse PET particles had the highest loading cycles at the end of primary creep region, where most of the strain was recoverable.\",\"PeriodicalId\":43959,\"journal\":{\"name\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Infrastructures Journal-CEIJ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/CEIJ.2018.02.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/CEIJ.2018.02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 7

摘要

本研究研究了不同用量废聚对苯二甲酸乙二醇酯(PET)在两种不同尺寸范围内改性沥青混凝土的蠕变性能。在40°C下对混合物的圆柱形试样进行了单轴动态蠕变试验。负载以0.5和5Hz的两个不同频率施加。蠕变试验结果表明,动态载荷下的累积应变随着PET含量的增加而增加,而含有较细PET颗粒的混合物的累积应变值较低。此外,研究发现,在较高频率的加载下,累积应变大于在较低频率下的累积应变,对于含有更精细PET的混合物,累积应变对频率的敏感性更高。动态蠕变试验的结果用于确定三阶段模型的常数。蠕变曲线第二区域的线性蠕变斜率和流动次数表明,PET含量和尺寸的增加导致永久变形阻力的降低。然而,用4%的细PET颗粒和粗PET颗粒改性的混合物在主蠕变区结束时具有最高的加载循环,其中大部分应变是可恢复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Creep Properties of PET-Modified Asphalt Concrete
This study has investigated the creep properties of asphaltic concrete modified with different dosages of waste polyethylene terephthalate (PET) in two different ranges of size. Uniaxial dynamic creep test at 40°C was conducted on the cylindrical specimens of the mixtures. The load was applied in two different frequencies of 0.5 and 5Hz. Creep test results showed that the accumulated strain under dynamic loading increased with increasing PET content, with lower values for the mixtures containing finer PET particles. Moreover, it was found that the accumulated strain under the loading with higher frequency was more than that under lower frequency, with higher sensitivity to frequency for the mixtures containing finer PET. The results of dynamic creep tests were used for determination of the constants of a three stage model. The linear creep slope in the second region of the creep curve and the flow number showed that the increase of PET content and size results in decrease of permanent deformation resistance. However, the mixtures modified with 4% of fine and coarse PET particles had the highest loading cycles at the end of primary creep region, where most of the strain was recoverable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
60.00%
发文量
0
审稿时长
47 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信