具有信息观测时间和终端事件的纵向数据的分位数回归联合建模

Pub Date : 2023-07-31 DOI:10.1002/cjs.11782
Weicai Pang, Yutao Liu, Xingqiu Zhao, Yong Zhou
{"title":"具有信息观测时间和终端事件的纵向数据的分位数回归联合建模","authors":"Weicai Pang,&nbsp;Yutao Liu,&nbsp;Xingqiu Zhao,&nbsp;Yong Zhou","doi":"10.1002/cjs.11782","DOIUrl":null,"url":null,"abstract":"<p>Longitudinal data arise frequently in biomedical follow-up observation studies. Conditional mean regression and conditional quantile regression are two popular approaches to model longitudinal data. Many results are derived under the case where the response variables are independent of the observation times. In this article, we propose a quantile regression model for the analysis of longitudinal data, where the longitudinal responses are allowed to not only depend on the past observation history but also associate with a terminal event (e.g., death). Non-smoothing estimating equation approaches are developed to estimate parameters, and the consistency and asymptotic normality of the proposed estimators are established. The asymptotic variance is estimated by a resampling method. A majorize-minimize algorithm is proposed to compute the proposed estimators. Simulation studies show that the proposed estimators perform well, and an HIV-RNA dataset is used to illustrate the proposed method.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint modelling of quantile regression for longitudinal data with information observation times and a terminal event\",\"authors\":\"Weicai Pang,&nbsp;Yutao Liu,&nbsp;Xingqiu Zhao,&nbsp;Yong Zhou\",\"doi\":\"10.1002/cjs.11782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Longitudinal data arise frequently in biomedical follow-up observation studies. Conditional mean regression and conditional quantile regression are two popular approaches to model longitudinal data. Many results are derived under the case where the response variables are independent of the observation times. In this article, we propose a quantile regression model for the analysis of longitudinal data, where the longitudinal responses are allowed to not only depend on the past observation history but also associate with a terminal event (e.g., death). Non-smoothing estimating equation approaches are developed to estimate parameters, and the consistency and asymptotic normality of the proposed estimators are established. The asymptotic variance is estimated by a resampling method. A majorize-minimize algorithm is proposed to compute the proposed estimators. Simulation studies show that the proposed estimators perform well, and an HIV-RNA dataset is used to illustrate the proposed method.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纵向数据经常出现在生物医学跟踪观察研究中。条件均值回归和条件量回归是建立纵向数据模型的两种常用方法。许多结果都是在响应变量与观察时间无关的情况下得出的。在本文中,我们提出了一种用于分析纵向数据的量化回归模型,在这种模型中,纵向响应不仅取决于过去的观察历史,而且还与终结事件(如死亡)相关联。我们开发了非平滑估计方程方法来估计参数,并建立了所建议估计器的一致性和渐近正态性。渐近方差是通过重采样方法估算的。此外,还提出了一种计算拟议估计值的主要最小化算法。模拟研究表明,所提出的估计器性能良好,并使用 HIV-RNA 数据集来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Joint modelling of quantile regression for longitudinal data with information observation times and a terminal event

Longitudinal data arise frequently in biomedical follow-up observation studies. Conditional mean regression and conditional quantile regression are two popular approaches to model longitudinal data. Many results are derived under the case where the response variables are independent of the observation times. In this article, we propose a quantile regression model for the analysis of longitudinal data, where the longitudinal responses are allowed to not only depend on the past observation history but also associate with a terminal event (e.g., death). Non-smoothing estimating equation approaches are developed to estimate parameters, and the consistency and asymptotic normality of the proposed estimators are established. The asymptotic variance is estimated by a resampling method. A majorize-minimize algorithm is proposed to compute the proposed estimators. Simulation studies show that the proposed estimators perform well, and an HIV-RNA dataset is used to illustrate the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信