{"title":"从高阶格到${\\rm{Out}}}{(F_N)}的Cocycle超刚性$","authors":"Vincent Guirardel, Camille Horbez, Jean Lécureux","doi":"10.3934/jmd.2022010","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove a rigidity result for cocycles from higher rank lattices to <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathrm{Out}(F_N) $\\end{document}</tex-math></inline-formula> and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let <inline-formula><tex-math id=\"M3\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula> be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let <inline-formula><tex-math id=\"M4\">\\begin{document}$ G \\curvearrowright X $\\end{document}</tex-math></inline-formula> be an ergodic measure-preserving action on a standard probability space, and let <inline-formula><tex-math id=\"M5\">\\begin{document}$ H $\\end{document}</tex-math></inline-formula> be a torsion-free hyperbolic group. We prove that every Borel cocycle <inline-formula><tex-math id=\"M6\">\\begin{document}$ G\\times X\\to \\mathrm{Out}(H) $\\end{document}</tex-math></inline-formula> is cohomologous to a cocycle with values in a finite subgroup of <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\mathrm{Out}(H) $\\end{document}</tex-math></inline-formula>. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from <inline-formula><tex-math id=\"M8\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula> to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.</p><p style='text-indent:20px;'>The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cocycle superrigidity from higher rank lattices to $ {{\\\\rm{Out}}}{(F_N)} $\",\"authors\":\"Vincent Guirardel, Camille Horbez, Jean Lécureux\",\"doi\":\"10.3934/jmd.2022010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We prove a rigidity result for cocycles from higher rank lattices to <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathrm{Out}(F_N) $\\\\end{document}</tex-math></inline-formula> and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ G $\\\\end{document}</tex-math></inline-formula> be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ G \\\\curvearrowright X $\\\\end{document}</tex-math></inline-formula> be an ergodic measure-preserving action on a standard probability space, and let <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ H $\\\\end{document}</tex-math></inline-formula> be a torsion-free hyperbolic group. We prove that every Borel cocycle <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ G\\\\times X\\\\to \\\\mathrm{Out}(H) $\\\\end{document}</tex-math></inline-formula> is cohomologous to a cocycle with values in a finite subgroup of <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\mathrm{Out}(H) $\\\\end{document}</tex-math></inline-formula>. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ G $\\\\end{document}</tex-math></inline-formula> to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.</p><p style='text-indent:20px;'>The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.</p>\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022010\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022010","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
We prove a rigidity result for cocycles from higher rank lattices to \begin{document}$ \mathrm{Out}(F_N) $\end{document} and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let \begin{document}$ G $\end{document} be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let \begin{document}$ G \curvearrowright X $\end{document} be an ergodic measure-preserving action on a standard probability space, and let \begin{document}$ H $\end{document} be a torsion-free hyperbolic group. We prove that every Borel cocycle \begin{document}$ G\times X\to \mathrm{Out}(H) $\end{document} is cohomologous to a cocycle with values in a finite subgroup of \begin{document}$ \mathrm{Out}(H) $\end{document}. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from \begin{document}$ G $\end{document} to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.
Cocycle superrigidity from higher rank lattices to $ {{\rm{Out}}}{(F_N)} $
We prove a rigidity result for cocycles from higher rank lattices to \begin{document}$ \mathrm{Out}(F_N) $\end{document} and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let \begin{document}$ G $\end{document} be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let \begin{document}$ G \curvearrowright X $\end{document} be an ergodic measure-preserving action on a standard probability space, and let \begin{document}$ H $\end{document} be a torsion-free hyperbolic group. We prove that every Borel cocycle \begin{document}$ G\times X\to \mathrm{Out}(H) $\end{document} is cohomologous to a cocycle with values in a finite subgroup of \begin{document}$ \mathrm{Out}(H) $\end{document}. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from \begin{document}$ G $\end{document} to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.
The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.