{"title":"编织Higman-Thompson群近亲的有限性质","authors":"Rachel Skipper, Xiaolei Wu","doi":"10.4171/ggd/731","DOIUrl":null,"url":null,"abstract":"We study the finiteness properties of the braided Higman--Thompson group $bV_{d,r}(H)$ with labels in $H\\leq B_d$, and $bF_{d,r}(H)$ and $bT_{d,r}(H)$ with labels in $H\\leq PB_d$ where $B_d$ is the braid group with $d$ strings and $PB_d$ is its pure braid subgroup. We show that for all $d\\geq 2$ and $r\\geq 1$, the group $bV_{d,r}(H)$ (resp. $bT_{d,r}(H)$ or $bF_{d,r}(H)$) is of type $F_n$ if and only if $H$ is. Our result in particular confirms a recent conjecture of Aroca and Cumplido.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finiteness properties for relatives of braided Higman–Thompson groups\",\"authors\":\"Rachel Skipper, Xiaolei Wu\",\"doi\":\"10.4171/ggd/731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the finiteness properties of the braided Higman--Thompson group $bV_{d,r}(H)$ with labels in $H\\\\leq B_d$, and $bF_{d,r}(H)$ and $bT_{d,r}(H)$ with labels in $H\\\\leq PB_d$ where $B_d$ is the braid group with $d$ strings and $PB_d$ is its pure braid subgroup. We show that for all $d\\\\geq 2$ and $r\\\\geq 1$, the group $bV_{d,r}(H)$ (resp. $bT_{d,r}(H)$ or $bF_{d,r}(H)$) is of type $F_n$ if and only if $H$ is. Our result in particular confirms a recent conjecture of Aroca and Cumplido.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finiteness properties for relatives of braided Higman–Thompson groups
We study the finiteness properties of the braided Higman--Thompson group $bV_{d,r}(H)$ with labels in $H\leq B_d$, and $bF_{d,r}(H)$ and $bT_{d,r}(H)$ with labels in $H\leq PB_d$ where $B_d$ is the braid group with $d$ strings and $PB_d$ is its pure braid subgroup. We show that for all $d\geq 2$ and $r\geq 1$, the group $bV_{d,r}(H)$ (resp. $bT_{d,r}(H)$ or $bF_{d,r}(H)$) is of type $F_n$ if and only if $H$ is. Our result in particular confirms a recent conjecture of Aroca and Cumplido.