{"title":"恒等式代数连通分量对合构造型管上的范数可及算子","authors":"Benard Okelo, Jeffar Oburu","doi":"10.30538/psrp-oma2022.0107","DOIUrl":null,"url":null,"abstract":"This work is an in-depth study of the class of norm-attainable operators in a general Banach space setting. We give characterizations of norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity. In particular, we prove reflexivity, boundedness and compactness properties when the set of these operators contains unit balls with involution for the tubes when they are of stereotype category","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity\",\"authors\":\"Benard Okelo, Jeffar Oburu\",\"doi\":\"10.30538/psrp-oma2022.0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is an in-depth study of the class of norm-attainable operators in a general Banach space setting. We give characterizations of norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity. In particular, we prove reflexivity, boundedness and compactness properties when the set of these operators contains unit balls with involution for the tubes when they are of stereotype category\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2022.0107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2022.0107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity
This work is an in-depth study of the class of norm-attainable operators in a general Banach space setting. We give characterizations of norm-attainable operators on involutive stereotype tubes with algebraically connected component of the identity. In particular, we prove reflexivity, boundedness and compactness properties when the set of these operators contains unit balls with involution for the tubes when they are of stereotype category