学生分布的精细正态近似

Frédéric Ouimet
{"title":"学生分布的精细正态近似","authors":"Frédéric Ouimet","doi":"10.7153/jca-2022-20-03","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a local limit theorem for the Student distribution. We use it to improve the normal approximation of the Student survival function given in Shafiei & Saberali (2015) and to derive asymptotic bounds for the corresponding maximal errors at four levels of approximation. As a corollary, approximations for the percentage points (or quantiles) of the Student distribution are obtained in terms of the percentage points of the standard normal distribution.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refined normal approximations for the Student distribution\",\"authors\":\"Frédéric Ouimet\",\"doi\":\"10.7153/jca-2022-20-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a local limit theorem for the Student distribution. We use it to improve the normal approximation of the Student survival function given in Shafiei & Saberali (2015) and to derive asymptotic bounds for the corresponding maximal errors at four levels of approximation. As a corollary, approximations for the percentage points (or quantiles) of the Student distribution are obtained in terms of the percentage points of the standard normal distribution.\",\"PeriodicalId\":73656,\"journal\":{\"name\":\"Journal of classical analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of classical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/jca-2022-20-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2022-20-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了学生分布的一个局部极限定理。我们用它来改进Shafiei & Saberali(2015)中给出的学生生存函数的正态近似,并在四个近似级别上推导出相应最大误差的渐近界。作为推论,学生分布的百分比(或分位数)的近似值是根据标准正态分布的百分比获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined normal approximations for the Student distribution
In this paper, we develop a local limit theorem for the Student distribution. We use it to improve the normal approximation of the Student survival function given in Shafiei & Saberali (2015) and to derive asymptotic bounds for the corresponding maximal errors at four levels of approximation. As a corollary, approximations for the percentage points (or quantiles) of the Student distribution are obtained in terms of the percentage points of the standard normal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信