M. Freire-Tellado, M. Muñoz-Vidal, J. Pérez-Valcárcel
{"title":"具有水平复合剪刀状元件的偏置可展开网格:折叠/展开过程的几何研究","authors":"M. Freire-Tellado, M. Muñoz-Vidal, J. Pérez-Valcárcel","doi":"10.1177/09560599211064094","DOIUrl":null,"url":null,"abstract":"Bias deployable structural units are two-way structures arranged in a rotational pattern with respect to the edges. They have interesting advantages such as robust three-dimensional operation with supports around their entire base perimeter and the exclusive use of load-bearing scissor-like elements (SLEs). However, they do not have edge trims and their resistance to angular distortion is limited. This article proposes a series of deployable bi-stable structures that address these problems and incorporate new, resilient features. A method of analysing the incompatibilities of the structural unit is developed based solely on the geometric study of the deployment process, which allows the level of incompatibility of the proposal to be graduated, varying from stress-free structures to bi-stable structures. A kinematic model of one of the proposals allows the research undertaken to be contrasted.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"37 1","pages":"22 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bias deployable grids with horizontal compound scissor-like elements: A geometric study of the folding/deployment process\",\"authors\":\"M. Freire-Tellado, M. Muñoz-Vidal, J. Pérez-Valcárcel\",\"doi\":\"10.1177/09560599211064094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bias deployable structural units are two-way structures arranged in a rotational pattern with respect to the edges. They have interesting advantages such as robust three-dimensional operation with supports around their entire base perimeter and the exclusive use of load-bearing scissor-like elements (SLEs). However, they do not have edge trims and their resistance to angular distortion is limited. This article proposes a series of deployable bi-stable structures that address these problems and incorporate new, resilient features. A method of analysing the incompatibilities of the structural unit is developed based solely on the geometric study of the deployment process, which allows the level of incompatibility of the proposal to be graduated, varying from stress-free structures to bi-stable structures. A kinematic model of one of the proposals allows the research undertaken to be contrasted.\",\"PeriodicalId\":34964,\"journal\":{\"name\":\"International Journal of Space Structures\",\"volume\":\"37 1\",\"pages\":\"22 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09560599211064094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599211064094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Bias deployable grids with horizontal compound scissor-like elements: A geometric study of the folding/deployment process
Bias deployable structural units are two-way structures arranged in a rotational pattern with respect to the edges. They have interesting advantages such as robust three-dimensional operation with supports around their entire base perimeter and the exclusive use of load-bearing scissor-like elements (SLEs). However, they do not have edge trims and their resistance to angular distortion is limited. This article proposes a series of deployable bi-stable structures that address these problems and incorporate new, resilient features. A method of analysing the incompatibilities of the structural unit is developed based solely on the geometric study of the deployment process, which allows the level of incompatibility of the proposal to be graduated, varying from stress-free structures to bi-stable structures. A kinematic model of one of the proposals allows the research undertaken to be contrasted.
期刊介绍:
The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.