{"title":"切线束上的固有双调和映射","authors":"N. Djaa, F. Latti, A. Zagane","doi":"10.46298/cm.10305","DOIUrl":null,"url":null,"abstract":"This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a\ndeformation non-conform of Sasaki metric over an n-dimensional Riemannian\nmanifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric\nand we characterize a new class of proper biharmonic maps. Examples of proper\nbiharmonic maps are constructed when all of the factors are Euclidean spaces.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proper biharmonic maps on tangent bundle\",\"authors\":\"N. Djaa, F. Latti, A. Zagane\",\"doi\":\"10.46298/cm.10305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a\\ndeformation non-conform of Sasaki metric over an n-dimensional Riemannian\\nmanifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric\\nand we characterize a new class of proper biharmonic maps. Examples of proper\\nbiharmonic maps are constructed when all of the factors are Euclidean spaces.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a
deformation non-conform of Sasaki metric over an n-dimensional Riemannian
manifold $(M, g)$. First we investigate the geometry of the Mus-Gradient metric
and we characterize a new class of proper biharmonic maps. Examples of proper
biharmonic maps are constructed when all of the factors are Euclidean spaces.
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.