{"title":"在两个潜在类别之间具有内生转换的有序概率模型的混合","authors":"J. Huismans, Jan Willem Nijenhuis, A. Sirchenko","doi":"10.1177/1536867X221124516","DOIUrl":null,"url":null,"abstract":"Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"557 - 596"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mixture of ordered probit models with endogenous switching between two latent classes\",\"authors\":\"J. Huismans, Jan Willem Nijenhuis, A. Sirchenko\",\"doi\":\"10.1177/1536867X221124516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":\"22 1\",\"pages\":\"557 - 596\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X221124516\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221124516","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
A mixture of ordered probit models with endogenous switching between two latent classes
Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.
期刊介绍:
The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.