{"title":"肿瘤节律化疗的数学依据","authors":"L. Fern'andez, C. Pola, Judith Sáinz-Pardo:","doi":"10.21203/rs.3.rs-1113138/v1","DOIUrl":null,"url":null,"abstract":"\n We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A mathematical justification for metronomic chemotherapy in oncology\",\"authors\":\"L. Fern'andez, C. Pola, Judith Sáinz-Pardo:\",\"doi\":\"10.21203/rs.3.rs-1113138/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1113138/v1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1113138/v1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A mathematical justification for metronomic chemotherapy in oncology
We mathematically justify metronomic chemotherapy as the best strategy to apply most cytotoxic drugs in oncology for both curative and palliative approaches, assuming the classical pharmacokinetic model together with the Emax pharmacodynamic and the Norton-Simon hypothesis.From the mathematical point of view, we will consider two mixed-integer nonlinear optimization problems, where the unknowns are the number of the doses and the quantity of each one, adjusting the administration times a posteriori.Mathematics Subject Classification: 93C15, 92C50, 90C30
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.