{"title":"保形巴赫流","authors":"Jiaqi Chen, Peng Lu, Jie Qing","doi":"10.1007/s10455-023-09897-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we introduce conformal Bach flow and establish its well-posedness on closed manifolds. We also obtain its backward uniqueness. To give an attempt to study the long-time behavior of conformal Bach flow, assuming that the curvature and the pressure function are bounded, global and local Shi’s type <span>\\(L^2\\)</span>-estimate of derivatives of curvatures is derived. Furthermore, using the <span>\\(L^2\\)</span>-estimate and based on an idea from (Streets in Calc Var PDE 46:39–54, 2013) we show Shi’s pointwise estimate of derivatives of curvatures without assuming Sobolev constant bound.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal Bach flow\",\"authors\":\"Jiaqi Chen, Peng Lu, Jie Qing\",\"doi\":\"10.1007/s10455-023-09897-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we introduce conformal Bach flow and establish its well-posedness on closed manifolds. We also obtain its backward uniqueness. To give an attempt to study the long-time behavior of conformal Bach flow, assuming that the curvature and the pressure function are bounded, global and local Shi’s type <span>\\\\(L^2\\\\)</span>-estimate of derivatives of curvatures is derived. Furthermore, using the <span>\\\\(L^2\\\\)</span>-estimate and based on an idea from (Streets in Calc Var PDE 46:39–54, 2013) we show Shi’s pointwise estimate of derivatives of curvatures without assuming Sobolev constant bound.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09897-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09897-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文引入保角巴赫流,并建立了它在闭流形上的适定性。我们也获得了它向后的独特性。为了尝试研究保角巴赫流的长期行为,假设曲率和压力函数是有界的,导出了曲率导数的全局和局部施型(L^2)估计。此外,使用\(L^2)-估计,并基于(Streets in Calc Var PDE 46:39–541013)中的一个想法,我们展示了施对曲率导数的逐点估计,而不假设Sobolev常数界。
In this article we introduce conformal Bach flow and establish its well-posedness on closed manifolds. We also obtain its backward uniqueness. To give an attempt to study the long-time behavior of conformal Bach flow, assuming that the curvature and the pressure function are bounded, global and local Shi’s type \(L^2\)-estimate of derivatives of curvatures is derived. Furthermore, using the \(L^2\)-estimate and based on an idea from (Streets in Calc Var PDE 46:39–54, 2013) we show Shi’s pointwise estimate of derivatives of curvatures without assuming Sobolev constant bound.