关于利用高残差符号进行安全多方计算的一个注记

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ignacio Cascudo, R. Schnyder
{"title":"关于利用高残差符号进行安全多方计算的一个注记","authors":"Ignacio Cascudo, R. Schnyder","doi":"10.1515/jmc-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract We generalize a protocol by Yu for comparing two integers with relatively small difference in a secure multiparty computation setting. Yu's protocol is based on the Legendre symbol. A prime number p is found for which the Legendre symbol (· | p) agrees with the sign function for integers in a certain range {−N, . . . , N} ⊂ ℤ. This can then be computed efficiently. We generalize this idea to higher residue symbols in cyclotomic rings ℤ[ζr] for r a small odd prime. We present a way to determine a prime number p such that the r-th residue symbol (· | p)r agrees with a desired function f:A→{ζr0,…,ζrr−1} f:A \\to \\left\\{ {\\zeta _r^0, \\ldots ,\\zeta _r^{r - 1}} \\right\\} on a given small subset A ⊂ ℤ[ζr], when this is possible. We also explain how to efficiently compute the r-th residue symbol in a secret shared setting.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"15 1","pages":"284 - 297"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2020-0013","citationCount":"0","resultStr":"{\"title\":\"A note on secure multiparty computation via higher residue symbols\",\"authors\":\"Ignacio Cascudo, R. Schnyder\",\"doi\":\"10.1515/jmc-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We generalize a protocol by Yu for comparing two integers with relatively small difference in a secure multiparty computation setting. Yu's protocol is based on the Legendre symbol. A prime number p is found for which the Legendre symbol (· | p) agrees with the sign function for integers in a certain range {−N, . . . , N} ⊂ ℤ. This can then be computed efficiently. We generalize this idea to higher residue symbols in cyclotomic rings ℤ[ζr] for r a small odd prime. We present a way to determine a prime number p such that the r-th residue symbol (· | p)r agrees with a desired function f:A→{ζr0,…,ζrr−1} f:A \\\\to \\\\left\\\\{ {\\\\zeta _r^0, \\\\ldots ,\\\\zeta _r^{r - 1}} \\\\right\\\\} on a given small subset A ⊂ ℤ[ζr], when this is possible. We also explain how to efficiently compute the r-th residue symbol in a secret shared setting.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"15 1\",\"pages\":\"284 - 297\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2020-0013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们推广了Yu的一个协议,用于在安全的多方计算环境中比较两个差异相对较小的整数。余的协议是以传奇符号为基础的。发现了一个素数p,其勒让德符号(·|p)与特定范围{−N,…,N}⊂的整数的符号函数一致ℤ. 然后可以有效地计算这一点。我们将这一思想推广到分圆环中的高残数符号ℤ[ζr]对于r是一个小的奇素数。我们提出了一种确定素数p的方法,使得第r个残差符号(·|p)r与期望的函数f:a一致→{ζr0,…,ζrr−1}f:A\to\left\{ζ_r^0,\ldots,\ζ_r^{r-1}}\right\}在给定的子集A⊂ℤ[ζr],当这是可能的时候。我们还解释了如何在秘密共享设置中有效地计算第r个残差符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on secure multiparty computation via higher residue symbols
Abstract We generalize a protocol by Yu for comparing two integers with relatively small difference in a secure multiparty computation setting. Yu's protocol is based on the Legendre symbol. A prime number p is found for which the Legendre symbol (· | p) agrees with the sign function for integers in a certain range {−N, . . . , N} ⊂ ℤ. This can then be computed efficiently. We generalize this idea to higher residue symbols in cyclotomic rings ℤ[ζr] for r a small odd prime. We present a way to determine a prime number p such that the r-th residue symbol (· | p)r agrees with a desired function f:A→{ζr0,…,ζrr−1} f:A \to \left\{ {\zeta _r^0, \ldots ,\zeta _r^{r - 1}} \right\} on a given small subset A ⊂ ℤ[ζr], when this is possible. We also explain how to efficiently compute the r-th residue symbol in a secret shared setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信