超流体条件下辉长岩-正长岩熔体分异的实验研究

IF 1.1 4区 地球科学 Q3 MINERALOGY
N. Bezmen, P. Gorbachev, R. Seltmann
{"title":"超流体条件下辉长岩-正长岩熔体分异的实验研究","authors":"N. Bezmen, P. Gorbachev, R. Seltmann","doi":"10.3749/canmin.1900057","DOIUrl":null,"url":null,"abstract":"In this work we present the results of experimental interaction of gabbro-syenite melt, corresponding to the average composition of Northern Timan rocks, with a complex hydrogen-containing fluid. The composition of the magmatic fluid was controlled to be close to natural conditions using a special cell in a high gas-pressure vessel. Under superliquidus conditions, the initial melt exsolves into melts of different composition, forming contrast, cryptic, and rhythmic melt stratifications. The experimental results agree with natural data in the petrochemical diagram. It follows from our experimental data that fluid-saturated melts in magmatic chambers are completely differentiated in the liquid state. In the absence of temperature gradients in the magma, gravitational migration of nanoclusters of different densities forms flotation, sedimentation, and rhythmic types of melt stratification. Transmission electron microscopy of the glasses formed in the cell was used to study the formation of nanoclusters in a fluid-saturated superliquidus anorthosite-granite model melt. Clusters with a size of 6 nm consist of a pseudo-crystalline anorthite core surrounded by fluid-saturated shells of the melt. The migration of fluid and fluid-enriched clusters to the upper part of the magmatic chamber results in the activation, from bottom to top, of the processes of crystallization in the magma.","PeriodicalId":9455,"journal":{"name":"Canadian Mineralogist","volume":"58 1","pages":"445-460"},"PeriodicalIF":1.1000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3749/canmin.1900057","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the differentiation of gabbro-syenite melt under superliquidus conditions\",\"authors\":\"N. Bezmen, P. Gorbachev, R. Seltmann\",\"doi\":\"10.3749/canmin.1900057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present the results of experimental interaction of gabbro-syenite melt, corresponding to the average composition of Northern Timan rocks, with a complex hydrogen-containing fluid. The composition of the magmatic fluid was controlled to be close to natural conditions using a special cell in a high gas-pressure vessel. Under superliquidus conditions, the initial melt exsolves into melts of different composition, forming contrast, cryptic, and rhythmic melt stratifications. The experimental results agree with natural data in the petrochemical diagram. It follows from our experimental data that fluid-saturated melts in magmatic chambers are completely differentiated in the liquid state. In the absence of temperature gradients in the magma, gravitational migration of nanoclusters of different densities forms flotation, sedimentation, and rhythmic types of melt stratification. Transmission electron microscopy of the glasses formed in the cell was used to study the formation of nanoclusters in a fluid-saturated superliquidus anorthosite-granite model melt. Clusters with a size of 6 nm consist of a pseudo-crystalline anorthite core surrounded by fluid-saturated shells of the melt. The migration of fluid and fluid-enriched clusters to the upper part of the magmatic chamber results in the activation, from bottom to top, of the processes of crystallization in the magma.\",\"PeriodicalId\":9455,\"journal\":{\"name\":\"Canadian Mineralogist\",\"volume\":\"58 1\",\"pages\":\"445-460\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3749/canmin.1900057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mineralogist\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.1900057\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3749/canmin.1900057","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了辉长岩-正长岩熔体与复杂含氢流体相互作用的实验结果,对应于北提曼岩石的平均组成。岩浆流体的组成被控制在接近自然条件下,使用高压容器中的特殊单元。在超流体条件下,初始熔体溶解成不同成分的熔体,形成对比、隐蔽性和节律性的熔体分层。实验结果与石油化学图中的自然数据吻合。从我们的实验数据可以看出,岩浆室中流体饱和熔体在液态状态下是完全分化的。在岩浆中没有温度梯度的情况下,不同密度纳米团簇的重力迁移形成了浮选、沉降和韵律型的熔融分层。利用透射电子显微镜对熔池中形成的玻璃进行了研究,研究了流体饱和超流体斜长岩-花岗岩模型熔体中纳米团簇的形成。大小为6 nm的簇由一个伪晶钙长石核心组成,周围是流体饱和的熔体壳。流体和富流体簇向岩浆室上部的迁移导致岩浆中自下而上的结晶过程的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the differentiation of gabbro-syenite melt under superliquidus conditions
In this work we present the results of experimental interaction of gabbro-syenite melt, corresponding to the average composition of Northern Timan rocks, with a complex hydrogen-containing fluid. The composition of the magmatic fluid was controlled to be close to natural conditions using a special cell in a high gas-pressure vessel. Under superliquidus conditions, the initial melt exsolves into melts of different composition, forming contrast, cryptic, and rhythmic melt stratifications. The experimental results agree with natural data in the petrochemical diagram. It follows from our experimental data that fluid-saturated melts in magmatic chambers are completely differentiated in the liquid state. In the absence of temperature gradients in the magma, gravitational migration of nanoclusters of different densities forms flotation, sedimentation, and rhythmic types of melt stratification. Transmission electron microscopy of the glasses formed in the cell was used to study the formation of nanoclusters in a fluid-saturated superliquidus anorthosite-granite model melt. Clusters with a size of 6 nm consist of a pseudo-crystalline anorthite core surrounded by fluid-saturated shells of the melt. The migration of fluid and fluid-enriched clusters to the upper part of the magmatic chamber results in the activation, from bottom to top, of the processes of crystallization in the magma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Mineralogist
Canadian Mineralogist 地学-矿物学
CiteScore
2.20
自引率
22.20%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Since 1962, The Canadian Mineralogist has published papers dealing with all aspects of mineralogy, crystallography, petrology, economic geology, geochemistry, and applied mineralogy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信