关于曲率下界度量测度空间的内外边界

Pub Date : 2023-08-31 DOI:10.1007/s10455-023-09920-1
Vitali Kapovitch, Xingyu Zhu
{"title":"关于曲率下界度量测度空间的内外边界","authors":"Vitali Kapovitch,&nbsp;Xingyu Zhu","doi":"10.1007/s10455-023-09920-1","DOIUrl":null,"url":null,"abstract":"<div><p>We show that if an Alexandrov space <i>X</i> has an Alexandrov subspace <span>\\({\\bar{\\Omega }}\\)</span> of the same dimension disjoint from the boundary of <i>X</i>, then the topological boundary of <span>\\({\\bar{\\Omega }}\\)</span> coincides with its Alexandrov boundary. Similarly, if a noncollapsed <span>\\({{\\,\\textrm{RCD}\\,}}(K,N)\\)</span> space <i>X</i> has a noncollapsed <span>\\({{\\,\\textrm{RCD}\\,}}(K,N)\\)</span> subspace <span>\\({\\bar{\\Omega }}\\)</span> disjoint from boundary of <i>X</i> and with mild boundary condition, then the topological boundary of <span>\\({\\bar{\\Omega }}\\)</span> coincides with its De Philippis–Gigli boundary. We then discuss some consequences about convexity of such type of equivalence.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the intrinsic and extrinsic boundary for metric measure spaces with lower curvature bounds\",\"authors\":\"Vitali Kapovitch,&nbsp;Xingyu Zhu\",\"doi\":\"10.1007/s10455-023-09920-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that if an Alexandrov space <i>X</i> has an Alexandrov subspace <span>\\\\({\\\\bar{\\\\Omega }}\\\\)</span> of the same dimension disjoint from the boundary of <i>X</i>, then the topological boundary of <span>\\\\({\\\\bar{\\\\Omega }}\\\\)</span> coincides with its Alexandrov boundary. Similarly, if a noncollapsed <span>\\\\({{\\\\,\\\\textrm{RCD}\\\\,}}(K,N)\\\\)</span> space <i>X</i> has a noncollapsed <span>\\\\({{\\\\,\\\\textrm{RCD}\\\\,}}(K,N)\\\\)</span> subspace <span>\\\\({\\\\bar{\\\\Omega }}\\\\)</span> disjoint from boundary of <i>X</i> and with mild boundary condition, then the topological boundary of <span>\\\\({\\\\bar{\\\\Omega }}\\\\)</span> coincides with its De Philippis–Gigli boundary. We then discuss some consequences about convexity of such type of equivalence.\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09920-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09920-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果一个Alexandrov空间X有一个同维的Alexandrov子空间\({\bar{\Omega}})与X的边界不相交,那么\({\bar{{\Omega})的拓扑边界与其Alexandrov边界重合。类似地,如果一个非collapsed\({{\,\textrm{RCD}\,}}(K,N)\)空间X有一个与X的边界不相交且具有温和边界条件的非collapsed \({\,\textrm{RCD}\、}}}(K,N))子空间\({\bar{\Omega}),则\({\bar{\Omega}})的拓扑边界与其De Philippis–Gigli边界重合。然后我们讨论了这类等价的凸性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the intrinsic and extrinsic boundary for metric measure spaces with lower curvature bounds

We show that if an Alexandrov space X has an Alexandrov subspace \({\bar{\Omega }}\) of the same dimension disjoint from the boundary of X, then the topological boundary of \({\bar{\Omega }}\) coincides with its Alexandrov boundary. Similarly, if a noncollapsed \({{\,\textrm{RCD}\,}}(K,N)\) space X has a noncollapsed \({{\,\textrm{RCD}\,}}(K,N)\) subspace \({\bar{\Omega }}\) disjoint from boundary of X and with mild boundary condition, then the topological boundary of \({\bar{\Omega }}\) coincides with its De Philippis–Gigli boundary. We then discuss some consequences about convexity of such type of equivalence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信