{"title":"具有特征函数窗口的Gabor双框架","authors":"H. Fard, Mohammad Ali","doi":"10.22130/SCMA.2020.121704.751","DOIUrl":null,"url":null,"abstract":"The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $left(chi_{left[c_1,d_1right)},a,bright)$ and $left(chi_{left[c_2,d_2right)},a,bright)$ to form dual frames for $L_2left(mathbb{R}right)$, where $a$ and $b$ are positive numbers and $c_1,c_2,d_1$ and $d_2$ are real numbers such that $c_1","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":"18 1","pages":"47-57"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gabor Dual Frames with Characteristic Function Window\",\"authors\":\"H. Fard, Mohammad Ali\",\"doi\":\"10.22130/SCMA.2020.121704.751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $left(chi_{left[c_1,d_1right)},a,bright)$ and $left(chi_{left[c_2,d_2right)},a,bright)$ to form dual frames for $L_2left(mathbb{R}right)$, where $a$ and $b$ are positive numbers and $c_1,c_2,d_1$ and $d_2$ are real numbers such that $c_1\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\"18 1\",\"pages\":\"47-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2020.121704.751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2020.121704.751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Gabor Dual Frames with Characteristic Function Window
The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $left(chi_{left[c_1,d_1right)},a,bright)$ and $left(chi_{left[c_2,d_2right)},a,bright)$ to form dual frames for $L_2left(mathbb{R}right)$, where $a$ and $b$ are positive numbers and $c_1,c_2,d_1$ and $d_2$ are real numbers such that $c_1