Xun Ding, Jia Xu, Haibo Xu, Jun Zhou, Qing-yun Long
{"title":"利用早期定量胸部CT参数对新冠肺炎严重程度的风险评估","authors":"Xun Ding, Jia Xu, Haibo Xu, Jun Zhou, Qing-yun Long","doi":"10.5812/iranjradiol.109439","DOIUrl":null,"url":null,"abstract":"Background: Today, the outbreak of coronavirus disease 2019 (COVID-19) is known as a public health emergency by the World Health Organization (WHO). Therefore, risk assessment is necessary for making a correct decision in disease management. Objectives: This study aimed to assess the risk of progression to the critical stage in COVID-19 patients, based on the early quantitative chest computed tomography (CT) parameters. Patients and Methods: In this case-control study, 39 laboratory-confirmed critical or expired COVID-19 cases (critical group), as well as 117 laboratory-confirmed COVID-19 patients including mild, moderate, and severe cases (non-critical group), were enrolled. Seven quantitative CT parameters, representing the lung volume percentages at different density intervals, were automatically calculated, using the artificial intelligence (AI) algorithms. Multivariable-adjusted logistic regression models, based on the quantitative CT parameters, were established to predict the adverse outcomes (critical vs. non-critical). The predictive performance was estimated using the receiver operating characteristic (ROC) curve analysis and by measuring the area under the ROC curve (AUC). The quantitative CT parameters in different stages were compared between the two groups. Results: No significant differences were found between the two groups regarding the lung volume percentages at different density intervals within 0 - 4 days (P = 0.596-0.938); however, this difference began to become significant within 5 - 9 days and persisted even after one month. Overall, the quantitative CT parameters could well predict the severity of COVID-19. The lung volume percentage of -7 Hounsfield units (-7 HUs) had the largest crude odds ratio (OR: 1.999; 95% CI, 1.453 ~ 2.750; P < 0.001) and adjusted OR (adjusted OR: 1.768; 95% CI, 1.114 ~ 2.808; P = 0.016). The lung volume percentage of -6 HU showed the best predictive performance with the largest AUC of 0.808; the cutoff value of 5.93% showed 71.79% sensitivity and 84.62% specificity. Conclusion: Early quantitative chest CT parameters can be measured to assess the risk of progression to the critical stage of COVID-19; this is of critical importance in the clinical management of this disease.","PeriodicalId":50273,"journal":{"name":"Iranian Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk Assessment Using Early Quantitative Chest CT Parameters for the Severity of COVID-19\",\"authors\":\"Xun Ding, Jia Xu, Haibo Xu, Jun Zhou, Qing-yun Long\",\"doi\":\"10.5812/iranjradiol.109439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Today, the outbreak of coronavirus disease 2019 (COVID-19) is known as a public health emergency by the World Health Organization (WHO). Therefore, risk assessment is necessary for making a correct decision in disease management. Objectives: This study aimed to assess the risk of progression to the critical stage in COVID-19 patients, based on the early quantitative chest computed tomography (CT) parameters. Patients and Methods: In this case-control study, 39 laboratory-confirmed critical or expired COVID-19 cases (critical group), as well as 117 laboratory-confirmed COVID-19 patients including mild, moderate, and severe cases (non-critical group), were enrolled. Seven quantitative CT parameters, representing the lung volume percentages at different density intervals, were automatically calculated, using the artificial intelligence (AI) algorithms. Multivariable-adjusted logistic regression models, based on the quantitative CT parameters, were established to predict the adverse outcomes (critical vs. non-critical). The predictive performance was estimated using the receiver operating characteristic (ROC) curve analysis and by measuring the area under the ROC curve (AUC). The quantitative CT parameters in different stages were compared between the two groups. Results: No significant differences were found between the two groups regarding the lung volume percentages at different density intervals within 0 - 4 days (P = 0.596-0.938); however, this difference began to become significant within 5 - 9 days and persisted even after one month. Overall, the quantitative CT parameters could well predict the severity of COVID-19. The lung volume percentage of -7 Hounsfield units (-7 HUs) had the largest crude odds ratio (OR: 1.999; 95% CI, 1.453 ~ 2.750; P < 0.001) and adjusted OR (adjusted OR: 1.768; 95% CI, 1.114 ~ 2.808; P = 0.016). The lung volume percentage of -6 HU showed the best predictive performance with the largest AUC of 0.808; the cutoff value of 5.93% showed 71.79% sensitivity and 84.62% specificity. Conclusion: Early quantitative chest CT parameters can be measured to assess the risk of progression to the critical stage of COVID-19; this is of critical importance in the clinical management of this disease.\",\"PeriodicalId\":50273,\"journal\":{\"name\":\"Iranian Journal of Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5812/iranjradiol.109439\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/iranjradiol.109439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Risk Assessment Using Early Quantitative Chest CT Parameters for the Severity of COVID-19
Background: Today, the outbreak of coronavirus disease 2019 (COVID-19) is known as a public health emergency by the World Health Organization (WHO). Therefore, risk assessment is necessary for making a correct decision in disease management. Objectives: This study aimed to assess the risk of progression to the critical stage in COVID-19 patients, based on the early quantitative chest computed tomography (CT) parameters. Patients and Methods: In this case-control study, 39 laboratory-confirmed critical or expired COVID-19 cases (critical group), as well as 117 laboratory-confirmed COVID-19 patients including mild, moderate, and severe cases (non-critical group), were enrolled. Seven quantitative CT parameters, representing the lung volume percentages at different density intervals, were automatically calculated, using the artificial intelligence (AI) algorithms. Multivariable-adjusted logistic regression models, based on the quantitative CT parameters, were established to predict the adverse outcomes (critical vs. non-critical). The predictive performance was estimated using the receiver operating characteristic (ROC) curve analysis and by measuring the area under the ROC curve (AUC). The quantitative CT parameters in different stages were compared between the two groups. Results: No significant differences were found between the two groups regarding the lung volume percentages at different density intervals within 0 - 4 days (P = 0.596-0.938); however, this difference began to become significant within 5 - 9 days and persisted even after one month. Overall, the quantitative CT parameters could well predict the severity of COVID-19. The lung volume percentage of -7 Hounsfield units (-7 HUs) had the largest crude odds ratio (OR: 1.999; 95% CI, 1.453 ~ 2.750; P < 0.001) and adjusted OR (adjusted OR: 1.768; 95% CI, 1.114 ~ 2.808; P = 0.016). The lung volume percentage of -6 HU showed the best predictive performance with the largest AUC of 0.808; the cutoff value of 5.93% showed 71.79% sensitivity and 84.62% specificity. Conclusion: Early quantitative chest CT parameters can be measured to assess the risk of progression to the critical stage of COVID-19; this is of critical importance in the clinical management of this disease.
期刊介绍:
The Iranian Journal of Radiology is the official journal of Tehran University of Medical Sciences and the Iranian Society of Radiology. It is a scientific forum dedicated primarily to the topics relevant to radiology and allied sciences of the developing countries, which have been neglected or have received little attention in the Western medical literature.
This journal particularly welcomes manuscripts which deal with radiology and imaging from geographic regions wherein problems regarding economic, social, ethnic and cultural parameters affecting prevalence and course of the illness are taken into consideration.
The Iranian Journal of Radiology has been launched in order to interchange information in the field of radiology and other related scientific spheres. In accordance with the objective of developing the scientific ability of the radiological population and other related scientific fields, this journal publishes research articles, evidence-based review articles, and case reports focused on regional tropics.
Iranian Journal of Radiology operates in agreement with the below principles in compliance with continuous quality improvement:
1-Increasing the satisfaction of the readers, authors, staff, and co-workers.
2-Improving the scientific content and appearance of the journal.
3-Advancing the scientific validity of the journal both nationally and internationally.
Such basics are accomplished only by aggregative effort and reciprocity of the radiological population and related sciences, authorities, and staff of the journal.