整数模Eisensete环的单位和单位CAYLEY图

Q3 Mathematics
R. Jahani-Nezhad, Ali Bahrami
{"title":"整数模Eisensete环的单位和单位CAYLEY图","authors":"R. Jahani-Nezhad, Ali Bahrami","doi":"10.15826/umj.2021.2.003","DOIUrl":null,"url":null,"abstract":"Let \\({E}_{n}\\) be the ring of Eisenstein integers modulo \\(n\\). We denote by \\(G({E}_{n})\\) and \\(G_{{E}_{n}}\\), the unit graph and the unitary Cayley graph of \\({E}_{n}\\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \\(n>1\\), the graphs \\(G(E_{n})\\) and \\(G_{E_{n}}\\) are Hamiltonian.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNIT AND UNITARY CAYLEY GRAPHS FOR THE RING OF EISENSTEIN INTEGERS MODULO \\\\(n\\\\)\",\"authors\":\"R. Jahani-Nezhad, Ali Bahrami\",\"doi\":\"10.15826/umj.2021.2.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\({E}_{n}\\\\) be the ring of Eisenstein integers modulo \\\\(n\\\\). We denote by \\\\(G({E}_{n})\\\\) and \\\\(G_{{E}_{n}}\\\\), the unit graph and the unitary Cayley graph of \\\\({E}_{n}\\\\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \\\\(n>1\\\\), the graphs \\\\(G(E_{n})\\\\) and \\\\(G_{E_{n}}\\\\) are Hamiltonian.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2021.2.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2021.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设\({E}_{n}\)为以\(n\)为模的爱森斯坦整数环。我们分别用\(G({E}_{n})\)和\(G_{{E}_{n}}\)表示\({E}_{n}\)的单位图和酉Cayley图。本文给出了这些图的直径、周长、团数和色数的取值。我们还证明了对于每个\(n>1\),图\(G(E_{n})\)和\(G_{E_{n}}\)是哈密顿的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNIT AND UNITARY CAYLEY GRAPHS FOR THE RING OF EISENSTEIN INTEGERS MODULO \(n\)
Let \({E}_{n}\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_{n})\) and \(G_{{E}_{n}}\), the unit graph and the unitary Cayley graph of \({E}_{n}\), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_{n})\) and \(G_{E_{n}}\) are Hamiltonian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信