具有乘性噪声和非lipschitz反应的随机反应-扩散系统的中等偏差原理

IF 0.7 Q3 STATISTICS & PROBABILITY
Juan Yang
{"title":"具有乘性噪声和非lipschitz反应的随机反应-扩散系统的中等偏差原理","authors":"Juan Yang","doi":"10.1080/24754269.2021.1963183","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we obtain a central limit theorem and prove a moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"299 - 308"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction\",\"authors\":\"Juan Yang\",\"doi\":\"10.1080/24754269.2021.1963183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we obtain a central limit theorem and prove a moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"299 - 308\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2021.1963183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1963183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文给出了具有乘性噪声和非lipschitz反应项的随机反应扩散系统的一个中心极限定理,并证明了该系统的一个中等偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction
ABSTRACT In this article, we obtain a central limit theorem and prove a moderate deviation principle for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信