{"title":"随机场景中淬灭功能CLT的研究","authors":"J. Conze","doi":"10.4064/sm210421-13-10","DOIUrl":null,"url":null,"abstract":"We prove a quenched functional central limit theorem (quenched FCLT) for the sums of a random field (r.f.) along a Z-random walk in different frameworks: probabilistic (when the r.f. is i.i.d. or a moving average of i.i.d. random variables) and algebraic (when the r.f. is generated by commuting automorphisms of a torus or by commuting hyperbolic flows on homogeneous spaces).","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the quenched functional CLT in random sceneries\",\"authors\":\"J. Conze\",\"doi\":\"10.4064/sm210421-13-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a quenched functional central limit theorem (quenched FCLT) for the sums of a random field (r.f.) along a Z-random walk in different frameworks: probabilistic (when the r.f. is i.i.d. or a moving average of i.i.d. random variables) and algebraic (when the r.f. is generated by commuting automorphisms of a torus or by commuting hyperbolic flows on homogeneous spaces).\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210421-13-10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210421-13-10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the quenched functional CLT in random sceneries
We prove a quenched functional central limit theorem (quenched FCLT) for the sums of a random field (r.f.) along a Z-random walk in different frameworks: probabilistic (when the r.f. is i.i.d. or a moving average of i.i.d. random variables) and algebraic (when the r.f. is generated by commuting automorphisms of a torus or by commuting hyperbolic flows on homogeneous spaces).
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.