{"title":"用法涅特公式的状态方程构造曲线","authors":"J. Chen, J. W. Lee, S. Kao, Y. Chou","doi":"10.1093/jom/ufab014","DOIUrl":null,"url":null,"abstract":"\n In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked. Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally, we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D and 3D curves is also provided by using the Mathematica software to demonstrate the validity of the present approach.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of a curve by using the state equation of Frenet formula\",\"authors\":\"J. Chen, J. W. Lee, S. Kao, Y. Chou\",\"doi\":\"10.1093/jom/ufab014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked. Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally, we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D and 3D curves is also provided by using the Mathematica software to demonstrate the validity of the present approach.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Construction of a curve by using the state equation of Frenet formula
In this paper, the available formulae for the curvature of plane curve are reviewed not only for the time-like but also for the space-like parameter curve. Two ways to describe the curve are proposed. One is the straight way to obtain the Frenet formula according to the given curve of parameter form. The other is that we can construct the curve by solving the state equation of Frenet formula subject to the initial position, the initial tangent, normal and binormal vectors, and the given radius of curvature and torsion constant. The remainder theorem of the matrix and the Cayley–Hamilton theorem are both employed to solve the Frenet equation. We review the available formulae of the radius of curvature and examine their equivalence. Through the Frenet formula, the relation among different expressions for the radius of curvature formulae can be linked. Therefore, we can integrate the formulae in the engineering mathematics, calculus, mechanics of materials and dynamics. Besides, biproduct of two new and simpler formulae and the available four formulae in the textbook of the radius of curvature yield the same radius of curvature for the plane curve. Linkage of centrifugal force and radius of curvature is also addressed. A demonstrative example of the cycloid is given. Finally, we use the two new formulae to obtain the radius of curvature for four curves, namely a circle. The equivalence is also proved. Animation for 2D and 3D curves is also provided by using the Mathematica software to demonstrate the validity of the present approach.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.