牛口蹄疫传播模型的动力学分析

IF 1.2 Q2 MATHEMATICS, APPLIED
Feng Li
{"title":"牛口蹄疫传播模型的动力学分析","authors":"Feng Li","doi":"10.4208/csiam-am.2020-0011","DOIUrl":null,"url":null,"abstract":"The epidemic of foot-and-mouth disease (FMD) in cattle remains particular concern in many countries or areas. The epidemic can spread by direct contact with the carrier and symptomatic animals, as well as indirect contact with the contaminated environment. The outbreak of FMD indicates that the infection initially spreads through the farm before spreading between farms. In this paper, considering the cattle population, we establish a dynamical model of FMD with two patches: within-farm and outside-farm, and give the formulae of the basic reproduction number R0. By constructing the Lyapunov function, we prove the disease-free equilibrium is globally asymptotically stable when R0 <1, and that of the unique endemic equilibrium when R0>1. By numerical simulations, we confirm the global stability of equilibria. In addition, by carrying out the sensitivity analysis of the basic reproduction number on some parameters, we reach the conclusion that vaccination, quarantining or removing of the carrier and disinfection are the useful control measures for FMD at the large-scale cattle farm. AMS subject classifications: 34D05,34D20","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamical Analysis of Transmission Model of the Cattle Foot-and-Mouth Disease\",\"authors\":\"Feng Li\",\"doi\":\"10.4208/csiam-am.2020-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The epidemic of foot-and-mouth disease (FMD) in cattle remains particular concern in many countries or areas. The epidemic can spread by direct contact with the carrier and symptomatic animals, as well as indirect contact with the contaminated environment. The outbreak of FMD indicates that the infection initially spreads through the farm before spreading between farms. In this paper, considering the cattle population, we establish a dynamical model of FMD with two patches: within-farm and outside-farm, and give the formulae of the basic reproduction number R0. By constructing the Lyapunov function, we prove the disease-free equilibrium is globally asymptotically stable when R0 <1, and that of the unique endemic equilibrium when R0>1. By numerical simulations, we confirm the global stability of equilibria. In addition, by carrying out the sensitivity analysis of the basic reproduction number on some parameters, we reach the conclusion that vaccination, quarantining or removing of the carrier and disinfection are the useful control measures for FMD at the large-scale cattle farm. AMS subject classifications: 34D05,34D20\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.2020-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

牛口蹄疫的流行在许多国家或地区仍然特别令人关切。这种流行病可以通过直接接触携带者和有症状的动物以及间接接触受污染的环境来传播。口蹄疫的爆发表明,感染最初通过农场传播,然后在农场之间传播。本文在考虑牛种群的情况下,建立了场内外两个斑块的口蹄疫动态模型,并给出了基本繁殖数R0的计算公式。通过构造李雅普诺夫函数,我们证明了无病平衡在R01时是全局渐近稳定的。通过数值模拟,我们证实了平衡点的全局稳定性。此外,通过对基本繁殖数对一些参数的敏感性分析,我们得出结论,接种疫苗、隔离或清除携带者以及消毒是大型养牛场控制口蹄疫的有效措施。AMS受试者分类:34D05,34D20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Analysis of Transmission Model of the Cattle Foot-and-Mouth Disease
The epidemic of foot-and-mouth disease (FMD) in cattle remains particular concern in many countries or areas. The epidemic can spread by direct contact with the carrier and symptomatic animals, as well as indirect contact with the contaminated environment. The outbreak of FMD indicates that the infection initially spreads through the farm before spreading between farms. In this paper, considering the cattle population, we establish a dynamical model of FMD with two patches: within-farm and outside-farm, and give the formulae of the basic reproduction number R0. By constructing the Lyapunov function, we prove the disease-free equilibrium is globally asymptotically stable when R0 <1, and that of the unique endemic equilibrium when R0>1. By numerical simulations, we confirm the global stability of equilibria. In addition, by carrying out the sensitivity analysis of the basic reproduction number on some parameters, we reach the conclusion that vaccination, quarantining or removing of the carrier and disinfection are the useful control measures for FMD at the large-scale cattle farm. AMS subject classifications: 34D05,34D20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信