改进的基于生物启发的聚集性乳腺癌症诊断算法

Q4 Mathematics
Moolchand Sharma, Shubbham Gupta, S. Deswal
{"title":"改进的基于生物启发的聚集性乳腺癌症诊断算法","authors":"Moolchand Sharma, Shubbham Gupta, S. Deswal","doi":"10.1504/IJICA.2021.10036070","DOIUrl":null,"url":null,"abstract":"The most widely detectable of all cancers found in women is breast cancer. The mortality rate is also the second-highest among women with a 12% growth rate. It is very pertinent to diagnose breast cancer in the nascent stages so that the survival of the patient is ensured with the help of proper medication. Several algorithms have been proposed in this regard. However, they have failed to achieve the desired level of accuracy. An improved version of the particle swarm optimisation and firefly algorithm is presented in this paper to overcome the drawbacks of the existing algorithm. The two algorithms are further aggregated to improve the accuracy of the results. The aggregated algorithm is used on the Breast Cancer Wisconsin (Diagnostic) Data Set (real-valued dataset), and results are calculated for different classifiers. An accuracy of 92%-96% is shown by improved particle swarm optimisation and 1%-2% overall hike in the accuracy by improved firefly algorithm, respectively. Finally, the aggregated algorithm shows an accuracy of 93%-97%. Further, random forest classifier has displayed the best accuracy of 97%.","PeriodicalId":39390,"journal":{"name":"International Journal of Innovative Computing and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified bio-inspired algorithms for diagnosis of breast cancer using aggregation\",\"authors\":\"Moolchand Sharma, Shubbham Gupta, S. Deswal\",\"doi\":\"10.1504/IJICA.2021.10036070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most widely detectable of all cancers found in women is breast cancer. The mortality rate is also the second-highest among women with a 12% growth rate. It is very pertinent to diagnose breast cancer in the nascent stages so that the survival of the patient is ensured with the help of proper medication. Several algorithms have been proposed in this regard. However, they have failed to achieve the desired level of accuracy. An improved version of the particle swarm optimisation and firefly algorithm is presented in this paper to overcome the drawbacks of the existing algorithm. The two algorithms are further aggregated to improve the accuracy of the results. The aggregated algorithm is used on the Breast Cancer Wisconsin (Diagnostic) Data Set (real-valued dataset), and results are calculated for different classifiers. An accuracy of 92%-96% is shown by improved particle swarm optimisation and 1%-2% overall hike in the accuracy by improved firefly algorithm, respectively. Finally, the aggregated algorithm shows an accuracy of 93%-97%. Further, random forest classifier has displayed the best accuracy of 97%.\",\"PeriodicalId\":39390,\"journal\":{\"name\":\"International Journal of Innovative Computing and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJICA.2021.10036070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICA.2021.10036070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在女性中发现的最广泛的癌症是乳腺癌癌症。死亡率也是女性中第二高的,增长率为12%。诊断处于初期阶段的癌症是非常重要的,以便在适当药物的帮助下确保患者的生存。在这方面已经提出了几种算法。然而,它们未能达到所需的精度水平。为了克服现有算法的不足,本文提出了粒子群优化和萤火虫算法的改进版本。这两种算法被进一步聚合以提高结果的准确性。在乳腺癌症威斯康星州(诊断)数据集(实值数据集)上使用聚合算法,并计算不同分类器的结果。改进的粒子群优化显示准确率分别为92%-96%,改进的萤火虫算法显示准确率总体提高了1%-2%。最后,聚合算法的准确率为93%-97%。此外,随机森林分类器显示出97%的最佳准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified bio-inspired algorithms for diagnosis of breast cancer using aggregation
The most widely detectable of all cancers found in women is breast cancer. The mortality rate is also the second-highest among women with a 12% growth rate. It is very pertinent to diagnose breast cancer in the nascent stages so that the survival of the patient is ensured with the help of proper medication. Several algorithms have been proposed in this regard. However, they have failed to achieve the desired level of accuracy. An improved version of the particle swarm optimisation and firefly algorithm is presented in this paper to overcome the drawbacks of the existing algorithm. The two algorithms are further aggregated to improve the accuracy of the results. The aggregated algorithm is used on the Breast Cancer Wisconsin (Diagnostic) Data Set (real-valued dataset), and results are calculated for different classifiers. An accuracy of 92%-96% is shown by improved particle swarm optimisation and 1%-2% overall hike in the accuracy by improved firefly algorithm, respectively. Finally, the aggregated algorithm shows an accuracy of 93%-97%. Further, random forest classifier has displayed the best accuracy of 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
23
期刊介绍: IJICA proposes and fosters discussion on all new computing paradigms and corresponding applications to solve real-world problems. It will cover all aspects related to evolutionary computation, quantum-inspired computing, swarm-based computing, neuro-computing, DNA computing and fuzzy computing, as well as other new computing paradigms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信