从Hummers法产生的废物中有效提取Mn2+离子用于锂离子电池

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY
Hongying Hou, Li Junkai, Jian Lan, Kun Meng, Baoxiang Huang, Hao Li
{"title":"从Hummers法产生的废物中有效提取Mn2+离子用于锂离子电池","authors":"Hongying Hou, Li Junkai, Jian Lan, Kun Meng, Baoxiang Huang, Hao Li","doi":"10.1115/1.4054780","DOIUrl":null,"url":null,"abstract":"\n Graphene nanosheets are produced in mass by Hummers method, accompanied with the emission of waste acid effluent with Mn2+, which should be reasonably recycled. Herein, Mn2+ was extracted into Mn3O4 nanoparticles by oxidation precipitation. Desirably, Mn3O4 powders were the spinel crystal phase and the particle size was 100-150 nm. The reversible discharge capacities of Mn3O4 anode maintained 528 mAh/g at 0.5 A/g for 100 cycles and 423 mAh/g at 1.0 A/g for 300 cycles, with high capacity retention ratios of 93.4 % and 91.1 %, respectively. Obviously, this work may promote the development of the circular economy.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient extraction of Mn2+ ions from the waste produced in the Hummers method for application in Li-ion batteries\",\"authors\":\"Hongying Hou, Li Junkai, Jian Lan, Kun Meng, Baoxiang Huang, Hao Li\",\"doi\":\"10.1115/1.4054780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Graphene nanosheets are produced in mass by Hummers method, accompanied with the emission of waste acid effluent with Mn2+, which should be reasonably recycled. Herein, Mn2+ was extracted into Mn3O4 nanoparticles by oxidation precipitation. Desirably, Mn3O4 powders were the spinel crystal phase and the particle size was 100-150 nm. The reversible discharge capacities of Mn3O4 anode maintained 528 mAh/g at 0.5 A/g for 100 cycles and 423 mAh/g at 1.0 A/g for 300 cycles, with high capacity retention ratios of 93.4 % and 91.1 %, respectively. Obviously, this work may promote the development of the circular economy.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054780\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054780","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯纳米片是用Hummers法大量生产的,同时排放含Mn2+的废酸废水,应合理回收。在此,通过氧化沉淀将Mn2+提取到Mn3O4纳米颗粒中。优选地,Mn3O4粉末为尖晶石晶相,并且颗粒尺寸为100-150nm。Mn3O4阳极的可逆放电容量在0.5A/g下维持528mAh/g达100次循环,在1.0A/g下保持423mAh/g长达300次循环,容量保持率分别为93.4%和91.1%。显然,这项工作可能会促进循环经济的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient extraction of Mn2+ ions from the waste produced in the Hummers method for application in Li-ion batteries
Graphene nanosheets are produced in mass by Hummers method, accompanied with the emission of waste acid effluent with Mn2+, which should be reasonably recycled. Herein, Mn2+ was extracted into Mn3O4 nanoparticles by oxidation precipitation. Desirably, Mn3O4 powders were the spinel crystal phase and the particle size was 100-150 nm. The reversible discharge capacities of Mn3O4 anode maintained 528 mAh/g at 0.5 A/g for 100 cycles and 423 mAh/g at 1.0 A/g for 300 cycles, with high capacity retention ratios of 93.4 % and 91.1 %, respectively. Obviously, this work may promote the development of the circular economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信