{"title":"Sampean流域雨站网络分析:数据聚集变化的比较","authors":"E. Hidayah, G. Halik, Minarni Nur Trilita","doi":"10.19184/geosi.v7i1.29160","DOIUrl":null,"url":null,"abstract":"The lack of rainfall-runoff accuracy is important for some applications. The choice of data aggregation that affects the estimation results is important at the level of accuracy. Some commonly used aggregations are daily, ten days, and monthly rainfall. This study aimed to compare the results of the estimation of the effect of data aggregation and to analyze the density of the rain gauge network in the Sampean watershed. The evaluation of the rain station network is carried out through the Kagan calculation. Rainfall data are from the rainfall data records for 20 years at 33 rain gauge stations. Measurement of the performance of aggregation variations using the relationship between the correlation value of rainfall with the distance between station locations. Station network positioning is assessed from alignment errors and interpolation errors. The results showed differences in the correlation and estimation values in the variation of data aggregation.The greater interval can increase the effectiveness of deployment with minimum error. Based on Kagan's analysis, there is an uneven distribution of gauge stations in the Sampean watershed eventhough the average and interpolation error in the monthly rainfall is less than 5%. It is this inequality that causes gauge stations to be inefficient. \nKeywords : Rain gauge network; correlation; Kagan; data aggregation \nCopyright (c) 2022 Geosfera Indonesia and Department of Geography Education, University of Jember \n This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License","PeriodicalId":33276,"journal":{"name":"Geosfera Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rain Station Network Analysis in the Sampean Watershed: Comparison of Variations in Data Aggregation\",\"authors\":\"E. Hidayah, G. Halik, Minarni Nur Trilita\",\"doi\":\"10.19184/geosi.v7i1.29160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of rainfall-runoff accuracy is important for some applications. The choice of data aggregation that affects the estimation results is important at the level of accuracy. Some commonly used aggregations are daily, ten days, and monthly rainfall. This study aimed to compare the results of the estimation of the effect of data aggregation and to analyze the density of the rain gauge network in the Sampean watershed. The evaluation of the rain station network is carried out through the Kagan calculation. Rainfall data are from the rainfall data records for 20 years at 33 rain gauge stations. Measurement of the performance of aggregation variations using the relationship between the correlation value of rainfall with the distance between station locations. Station network positioning is assessed from alignment errors and interpolation errors. The results showed differences in the correlation and estimation values in the variation of data aggregation.The greater interval can increase the effectiveness of deployment with minimum error. Based on Kagan's analysis, there is an uneven distribution of gauge stations in the Sampean watershed eventhough the average and interpolation error in the monthly rainfall is less than 5%. It is this inequality that causes gauge stations to be inefficient. \\nKeywords : Rain gauge network; correlation; Kagan; data aggregation \\nCopyright (c) 2022 Geosfera Indonesia and Department of Geography Education, University of Jember \\n This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License\",\"PeriodicalId\":33276,\"journal\":{\"name\":\"Geosfera Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosfera Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/geosi.v7i1.29160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosfera Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/geosi.v7i1.29160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rain Station Network Analysis in the Sampean Watershed: Comparison of Variations in Data Aggregation
The lack of rainfall-runoff accuracy is important for some applications. The choice of data aggregation that affects the estimation results is important at the level of accuracy. Some commonly used aggregations are daily, ten days, and monthly rainfall. This study aimed to compare the results of the estimation of the effect of data aggregation and to analyze the density of the rain gauge network in the Sampean watershed. The evaluation of the rain station network is carried out through the Kagan calculation. Rainfall data are from the rainfall data records for 20 years at 33 rain gauge stations. Measurement of the performance of aggregation variations using the relationship between the correlation value of rainfall with the distance between station locations. Station network positioning is assessed from alignment errors and interpolation errors. The results showed differences in the correlation and estimation values in the variation of data aggregation.The greater interval can increase the effectiveness of deployment with minimum error. Based on Kagan's analysis, there is an uneven distribution of gauge stations in the Sampean watershed eventhough the average and interpolation error in the monthly rainfall is less than 5%. It is this inequality that causes gauge stations to be inefficient.
Keywords : Rain gauge network; correlation; Kagan; data aggregation
Copyright (c) 2022 Geosfera Indonesia and Department of Geography Education, University of Jember
This work is licensed under a Creative Commons Attribution-Share A like 4.0 International License