复合氢氧化物介导合成氢氧化镉纳米结构

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Adnan, M. Arfan, T. Shahid, Mz Khan, R. Masab, Ah Ramish, S. Ahtasham, AG Wattoo, M. Hashim, A. Zahoor, MF Nasir
{"title":"复合氢氧化物介导合成氢氧化镉纳米结构","authors":"J. Adnan, M. Arfan, T. Shahid, Mz Khan, R. Masab, Ah Ramish, S. Ahtasham, AG Wattoo, M. Hashim, A. Zahoor, MF Nasir","doi":"10.1177/1847980419852551","DOIUrl":null,"url":null,"abstract":"Polycrystalline cadmium hydroxide nanomaterials have successfully been synthesized by composite-hydroxide-mediated approach with growth time variation. The influence of growth time on structural, morphological, elemental, and optical properties was explored using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and ultraviolet–visible spectroscopy. X-ray diffraction results revealed the hexagonal and monoclinic phases of cadmium hydroxide along with rhombohedral impurity phase of cadmium carbonate. Fourier transform infrared spectroscopy further endorsed the X-ray diffraction results and confirmed the Cd–O bonding vibrations. Time-dependent uniform distribution of spherical morphology was observed in the scanning electron micrographs of the product. The presence of cadmium and oxygen in the energy dispersive X-ray spectroscopy results fingerprinted the purity and formation of the desired nanomaterials. Crystallite size was decreased with the increase of growth time as estimated by the Debye–Scherrer method. Furthermore, the optical bandgap was measured by Tauc’s relation using ultraviolet–visible absorption spectra and found to be in the range of 3.2–3.5 eV.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980419852551","citationCount":"11","resultStr":"{\"title\":\"Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach\",\"authors\":\"J. Adnan, M. Arfan, T. Shahid, Mz Khan, R. Masab, Ah Ramish, S. Ahtasham, AG Wattoo, M. Hashim, A. Zahoor, MF Nasir\",\"doi\":\"10.1177/1847980419852551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polycrystalline cadmium hydroxide nanomaterials have successfully been synthesized by composite-hydroxide-mediated approach with growth time variation. The influence of growth time on structural, morphological, elemental, and optical properties was explored using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and ultraviolet–visible spectroscopy. X-ray diffraction results revealed the hexagonal and monoclinic phases of cadmium hydroxide along with rhombohedral impurity phase of cadmium carbonate. Fourier transform infrared spectroscopy further endorsed the X-ray diffraction results and confirmed the Cd–O bonding vibrations. Time-dependent uniform distribution of spherical morphology was observed in the scanning electron micrographs of the product. The presence of cadmium and oxygen in the energy dispersive X-ray spectroscopy results fingerprinted the purity and formation of the desired nanomaterials. Crystallite size was decreased with the increase of growth time as estimated by the Debye–Scherrer method. Furthermore, the optical bandgap was measured by Tauc’s relation using ultraviolet–visible absorption spectra and found to be in the range of 3.2–3.5 eV.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1847980419852551\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1847980419852551\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1847980419852551","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

采用复合氢氧化物介导的方法,成功地合成了随生长时间变化的多晶氢氧化镉纳米材料。利用x射线衍射、扫描电镜、傅里叶变换红外光谱、能量色散x射线光谱和紫外可见光谱等方法探讨了生长时间对结构、形态、元素和光学性质的影响。x射线衍射结果表明,氢氧化镉为六方和单斜相,碳酸镉为菱面体杂质相。傅里叶变换红外光谱进一步证实了x射线衍射结果,并证实了Cd-O键合振动。扫描电镜观察到产物的球形形貌随时间的均匀分布。在能量色散x射线光谱学结果中镉和氧的存在表明了所需纳米材料的纯度和形成。通过Debye-Scherrer法估计,晶体尺寸随生长时间的增加而减小。利用紫外-可见吸收光谱,利用Tauc关系测量了带隙,带隙范围在3.2 ~ 3.5 eV之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach
Polycrystalline cadmium hydroxide nanomaterials have successfully been synthesized by composite-hydroxide-mediated approach with growth time variation. The influence of growth time on structural, morphological, elemental, and optical properties was explored using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and ultraviolet–visible spectroscopy. X-ray diffraction results revealed the hexagonal and monoclinic phases of cadmium hydroxide along with rhombohedral impurity phase of cadmium carbonate. Fourier transform infrared spectroscopy further endorsed the X-ray diffraction results and confirmed the Cd–O bonding vibrations. Time-dependent uniform distribution of spherical morphology was observed in the scanning electron micrographs of the product. The presence of cadmium and oxygen in the energy dispersive X-ray spectroscopy results fingerprinted the purity and formation of the desired nanomaterials. Crystallite size was decreased with the increase of growth time as estimated by the Debye–Scherrer method. Furthermore, the optical bandgap was measured by Tauc’s relation using ultraviolet–visible absorption spectra and found to be in the range of 3.2–3.5 eV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信