T. Zhanlav, Kh. Otgondorj, Renchin-Ochir Mijiddorj
{"title":"求解非线性方程的最优八阶无导数方法的构造理论","authors":"T. Zhanlav, Kh. Otgondorj, Renchin-Ochir Mijiddorj","doi":"10.4236/ajcm.2020.101007","DOIUrl":null,"url":null,"abstract":"This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constructive Theory of Designing Optimal Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations\",\"authors\":\"T. Zhanlav, Kh. Otgondorj, Renchin-Ochir Mijiddorj\",\"doi\":\"10.4236/ajcm.2020.101007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2020.101007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.101007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructive Theory of Designing Optimal Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations
This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.