{"title":"关于罗宾逊能量延迟定理","authors":"L. Ephremidze , W.H. Gerstacker , I. Spitkovsky","doi":"10.1016/j.trmi.2016.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>An elementary proof of Robinson’s Energy Delay Theorem on minimum-phase functions is provided. The situation in which the energy conservation property holds for an infinite number of lags is fully described.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"171 1","pages":"Pages 16-23"},"PeriodicalIF":0.3000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2016.12.004","citationCount":"0","resultStr":"{\"title\":\"On Robinson’s Energy Delay Theorem\",\"authors\":\"L. Ephremidze , W.H. Gerstacker , I. Spitkovsky\",\"doi\":\"10.1016/j.trmi.2016.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An elementary proof of Robinson’s Energy Delay Theorem on minimum-phase functions is provided. The situation in which the energy conservation property holds for an infinite number of lags is fully described.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"171 1\",\"pages\":\"Pages 16-23\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2016.12.004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809216301301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809216301301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An elementary proof of Robinson’s Energy Delay Theorem on minimum-phase functions is provided. The situation in which the energy conservation property holds for an infinite number of lags is fully described.