复合分布的尾矩

IF 1.4 Q3 BUSINESS, FINANCE
Jiandong Ren
{"title":"复合分布的尾矩","authors":"Jiandong Ren","doi":"10.2139/ssrn.3880127","DOIUrl":null,"url":null,"abstract":"In this article, we study the moment transform of both univariate and multivariate compound sums. We first derive simple explicit formulas for the first and second moment transforms when the (loss) frequency distribution is in the so-called class. Then we show that the derived formulas can be used to efficiently compute risk measures such as the tail conditional expectation (TCE), the tail variance (TV), and higher tail moments. The results generalize those in Denuit (North American Actuarial Journal, 24 (4):512–32, 2020).","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"26 1","pages":"336 - 350"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tail Moments of Compound Distributions\",\"authors\":\"Jiandong Ren\",\"doi\":\"10.2139/ssrn.3880127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the moment transform of both univariate and multivariate compound sums. We first derive simple explicit formulas for the first and second moment transforms when the (loss) frequency distribution is in the so-called class. Then we show that the derived formulas can be used to efficiently compute risk measures such as the tail conditional expectation (TCE), the tail variance (TV), and higher tail moments. The results generalize those in Denuit (North American Actuarial Journal, 24 (4):512–32, 2020).\",\"PeriodicalId\":46812,\"journal\":{\"name\":\"North American Actuarial Journal\",\"volume\":\"26 1\",\"pages\":\"336 - 350\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3880127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3880127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了单变量和多变量复合和的矩变换。当(损耗)频率分布在所谓的类中时,我们首先导出第一和第二矩变换的简单显式公式。然后,我们证明了导出的公式可以用于有效地计算风险度量,如尾部条件期望(TCE)、尾部方差(TV)和更高的尾部矩。该结果概括了Denuit(《北美精算杂志》,24(4):512-32020)中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail Moments of Compound Distributions
In this article, we study the moment transform of both univariate and multivariate compound sums. We first derive simple explicit formulas for the first and second moment transforms when the (loss) frequency distribution is in the so-called class. Then we show that the derived formulas can be used to efficiently compute risk measures such as the tail conditional expectation (TCE), the tail variance (TV), and higher tail moments. The results generalize those in Denuit (North American Actuarial Journal, 24 (4):512–32, 2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信