{"title":"涉及素数的一般极限公式","authors":"Reza Farhadian, R. Jakimczuk","doi":"10.2478/amsil-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract Let pn be the n th prime number. In this note, we study strictly increasing sequences of positive integers An such that the limit limn→∞ (A1A2 · · · An)1/pn = e holds. This limit formula is in fact a generalization of some previously known results. Furthermore, some other generalizations are established.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"176 - 183"},"PeriodicalIF":0.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Limit Formulae Involving Prime Numbers\",\"authors\":\"Reza Farhadian, R. Jakimczuk\",\"doi\":\"10.2478/amsil-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let pn be the n th prime number. In this note, we study strictly increasing sequences of positive integers An such that the limit limn→∞ (A1A2 · · · An)1/pn = e holds. This limit formula is in fact a generalization of some previously known results. Furthermore, some other generalizations are established.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"176 - 183\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Let pn be the n th prime number. In this note, we study strictly increasing sequences of positive integers An such that the limit limn→∞ (A1A2 · · · An)1/pn = e holds. This limit formula is in fact a generalization of some previously known results. Furthermore, some other generalizations are established.