富攸海森方程

IF 1.3 1区 数学 Q1 MATHEMATICS
D. Phong, Sebastien Picard, Xiangwen Zhang
{"title":"富攸海森方程","authors":"D. Phong, Sebastien Picard, Xiangwen Zhang","doi":"10.4310/JDG/1620272943","DOIUrl":null,"url":null,"abstract":"We solve the Fu-Yau equation for arbitrary dimension and arbitrary slope $\\alpha'$. Actually we obtain at the same time a solution of the open case $\\alpha'>0$, an improved solution of the known case $\\alpha'<0$, and solutions for a family of Hessian equations which includes the Fu-Yau equation as a special case. The method is based on the introduction of a more stringent ellipticity condition than the usual $\\Gamma_k$ admissible cone condition, and which can be shown to be preserved by precise estimates with scale.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Fu–Yau Hessian equations\",\"authors\":\"D. Phong, Sebastien Picard, Xiangwen Zhang\",\"doi\":\"10.4310/JDG/1620272943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve the Fu-Yau equation for arbitrary dimension and arbitrary slope $\\\\alpha'$. Actually we obtain at the same time a solution of the open case $\\\\alpha'>0$, an improved solution of the known case $\\\\alpha'<0$, and solutions for a family of Hessian equations which includes the Fu-Yau equation as a special case. The method is based on the introduction of a more stringent ellipticity condition than the usual $\\\\Gamma_k$ admissible cone condition, and which can be shown to be preserved by precise estimates with scale.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1620272943\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1620272943","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 41

摘要

我们求解任意尺寸和任意斜率的Fu-Yau方程$\alpha'$。实际上,我们同时得到了开放情况$\alpha'>0$的一个解,已知情况$\alpha'<0$的一个改进解,以及包括Fu-Yau方程作为特例的一类Hessian方程的解。该方法引入了一个比通常的$\Gamma_k$容许锥条件更为严格的椭圆性条件,并且可以用尺度的精确估计来证明它是守恒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fu–Yau Hessian equations
We solve the Fu-Yau equation for arbitrary dimension and arbitrary slope $\alpha'$. Actually we obtain at the same time a solution of the open case $\alpha'>0$, an improved solution of the known case $\alpha'<0$, and solutions for a family of Hessian equations which includes the Fu-Yau equation as a special case. The method is based on the introduction of a more stringent ellipticity condition than the usual $\Gamma_k$ admissible cone condition, and which can be shown to be preserved by precise estimates with scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信