Omar Paranaiba, Poliana A. C. Oliveira, Renan A. Marks, Gabriel Novy, Maria D. Vieira, Laysson Oliveira Luz, P. A. Silva, Ricardo Ferreira, J. Ramirez, J. Nacif, Guilherme Caporali
{"title":"新兴技术的设计自动化","authors":"Omar Paranaiba, Poliana A. C. Oliveira, Renan A. Marks, Gabriel Novy, Maria D. Vieira, Laysson Oliveira Luz, P. A. Silva, Ricardo Ferreira, J. Ramirez, J. Nacif, Guilherme Caporali","doi":"10.29292/jics.v17i3.652","DOIUrl":null,"url":null,"abstract":"After the continuous development of CMOS technology driven by transistor miniaturization and Moore’s law, the scientific community is witnessing the exploration of emerging paradigms to find new ways to develop computational systems. This paper presents critical concepts for understanding some of these new nanocomputing technologies, specifically field-coupled, quantum-dot cellular automata, nanomagnetic logic, silicon dangling bounds, photonic crystal logic, and DNA computing. Next, it shows emerging design automation tools for each of these areas and how they can be applied to support the development of new computing systems. The level of maturity and production speed of solutions achieved by conventional silicon technology thanks to very efficient electronic design automation (EDA) is remarkable. However, here we are dealing with technologies still in their infancy. Therefore, improvements in design automation tools are undoubtedly a way to accelerate the growth of new substrate alternatives and modern applications.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Automation for Emerging Technologies\",\"authors\":\"Omar Paranaiba, Poliana A. C. Oliveira, Renan A. Marks, Gabriel Novy, Maria D. Vieira, Laysson Oliveira Luz, P. A. Silva, Ricardo Ferreira, J. Ramirez, J. Nacif, Guilherme Caporali\",\"doi\":\"10.29292/jics.v17i3.652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After the continuous development of CMOS technology driven by transistor miniaturization and Moore’s law, the scientific community is witnessing the exploration of emerging paradigms to find new ways to develop computational systems. This paper presents critical concepts for understanding some of these new nanocomputing technologies, specifically field-coupled, quantum-dot cellular automata, nanomagnetic logic, silicon dangling bounds, photonic crystal logic, and DNA computing. Next, it shows emerging design automation tools for each of these areas and how they can be applied to support the development of new computing systems. The level of maturity and production speed of solutions achieved by conventional silicon technology thanks to very efficient electronic design automation (EDA) is remarkable. However, here we are dealing with technologies still in their infancy. Therefore, improvements in design automation tools are undoubtedly a way to accelerate the growth of new substrate alternatives and modern applications.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i3.652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i3.652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
After the continuous development of CMOS technology driven by transistor miniaturization and Moore’s law, the scientific community is witnessing the exploration of emerging paradigms to find new ways to develop computational systems. This paper presents critical concepts for understanding some of these new nanocomputing technologies, specifically field-coupled, quantum-dot cellular automata, nanomagnetic logic, silicon dangling bounds, photonic crystal logic, and DNA computing. Next, it shows emerging design automation tools for each of these areas and how they can be applied to support the development of new computing systems. The level of maturity and production speed of solutions achieved by conventional silicon technology thanks to very efficient electronic design automation (EDA) is remarkable. However, here we are dealing with technologies still in their infancy. Therefore, improvements in design automation tools are undoubtedly a way to accelerate the growth of new substrate alternatives and modern applications.
期刊介绍:
This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.