{"title":"三维流形上调和四元数场的代数性质和唯一性","authors":"M. Belishev, A. Vakulenko","doi":"10.4067/S0719-06462019000100001","DOIUrl":null,"url":null,"abstract":"Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space 𝒞(Ω) of harmonic fields is a subspace of the Banach algebra 𝒬 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨𝒞(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds\",\"authors\":\"M. Belishev, A. Vakulenko\",\"doi\":\"10.4067/S0719-06462019000100001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space 𝒞(Ω) of harmonic fields is a subspace of the Banach algebra 𝒬 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨𝒞(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462019000100001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462019000100001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
设Ω为具有边界的光滑紧致三维黎曼流形。四元数域是一个函数α和Ω上的向量域u的一对q = {α, u}。如果α, u在Ω中连续且∇α = rot u, div u = 0在Ω中成立,则场q是调和的。调和场的空间 (Ω)是连续四元数场的Banach代数𝒬(Ω)的子空间,其点向乘法qq ' = {αα ' - u·u ', αu ' + α ' u + u∧u '}。我们证明了一个Stone-Weierstrass型定理:谐波场产生的子代数在𝒬(Ω)上是稠密的;给出了调和函数的2-射流和调和场的唯一性集的一些结果。谐波的全面研究是由可能应用于数学物理的反问题。
On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds
Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space 𝒞(Ω) of harmonic fields is a subspace of the Banach algebra 𝒬 (Ω) of continuous quaternion fields with the point-wise multiplication qq′ = {αα′ − u · u ′ , αu′ + α ′u + u ∧ u ′ }. We prove a Stone-Weierstrass type theorem: the subalgebra ∨𝒞(Ω) generated by harmonic fields is dense in 𝒬 (Ω). Some results on 2-jets of harmonic functions and the uniqueness sets of harmonic fields are provided. Comprehensive study of harmonic fields is motivated by possible applications to inverse problems of mathematical physics.