H. Hegde, I. Glurich, A. Panny, J. Vedre, J. Vanwormer, R. Berg, F. Scannapieco, J. Miecznikowski, A. Acharya
{"title":"使用基于规则的算法从电子健康记录中识别肺炎亚型。","authors":"H. Hegde, I. Glurich, A. Panny, J. Vedre, J. Vanwormer, R. Berg, F. Scannapieco, J. Miecznikowski, A. Acharya","doi":"10.1055/a-1801-2718","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nInternational Classification of Disease (ICD) coding for pneumonia classification is based on causal organism or use of general pneumonia codes, creating challenges for epidemiological evaluations, where pneumonia is standardly subtyped by settings, exposures and time of emergence. Pneumonia subtype classification requires data available in electronic health records (EHR), frequently in non-structured formats including radiological interpretation or clinical notes that complicate electronic classification.\n\n\nOBJECTIVE\nThe current study undertook development of a rule-based pneumonia subtyping algorithm for stratifying pneumonia by the setting in which it emerged using information documented in the EHR.\n\n\nMETHODS\nPneumonia subtype classification was developed by interrogating patient information within the EHR of a large private Health System. ICD coding was mined in the EHR applying requirements for 'rule of two' pneumonia-related codes or one ICD code and radiologically-confirmed pneumonia validated by natural language processing and/or documented antibiotic prescriptions. A rule-based algorithm flow chart was created to support sub-classification based on features including symptomatic patient point of entry into the healthcare system timing of pneumonia emergence and identification of clinical, laboratory or medication orders that informed definition of the pneumonia sub-classification algorithm.\n\n\nRESULTS\nData from 65,904 study-eligible patients with 91,998 episodes of pneumonia diagnoses documented by 380,509 encounters were analyzed, while 8,611 episodes were excluded following NLP classification of pneumonia status as 'negative' or 'unknown'. Subtyping of 83,387 episodes identified: community acquired (54.5%), hospital-acquired (20%), aspiration-related (10.7%), healthcare-acquired (5%), ventilator-associated (0.4%) cases, and 9.4% were not classifiable by the algorithm.\n\n\nCONCLUSION\nStudy outcome indicated capacity to achieve electronic pneumonia subtype classification based on interrogation of big data available in the EHR. Examination of portability of the algorithm to achieve rule-based pneumonia classification in other health systems remains to be explored.","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying Pneumonia Sub-types from Electronic Health Records Using Rule-based Algorithms.\",\"authors\":\"H. Hegde, I. Glurich, A. Panny, J. Vedre, J. Vanwormer, R. Berg, F. Scannapieco, J. Miecznikowski, A. Acharya\",\"doi\":\"10.1055/a-1801-2718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nInternational Classification of Disease (ICD) coding for pneumonia classification is based on causal organism or use of general pneumonia codes, creating challenges for epidemiological evaluations, where pneumonia is standardly subtyped by settings, exposures and time of emergence. Pneumonia subtype classification requires data available in electronic health records (EHR), frequently in non-structured formats including radiological interpretation or clinical notes that complicate electronic classification.\\n\\n\\nOBJECTIVE\\nThe current study undertook development of a rule-based pneumonia subtyping algorithm for stratifying pneumonia by the setting in which it emerged using information documented in the EHR.\\n\\n\\nMETHODS\\nPneumonia subtype classification was developed by interrogating patient information within the EHR of a large private Health System. ICD coding was mined in the EHR applying requirements for 'rule of two' pneumonia-related codes or one ICD code and radiologically-confirmed pneumonia validated by natural language processing and/or documented antibiotic prescriptions. A rule-based algorithm flow chart was created to support sub-classification based on features including symptomatic patient point of entry into the healthcare system timing of pneumonia emergence and identification of clinical, laboratory or medication orders that informed definition of the pneumonia sub-classification algorithm.\\n\\n\\nRESULTS\\nData from 65,904 study-eligible patients with 91,998 episodes of pneumonia diagnoses documented by 380,509 encounters were analyzed, while 8,611 episodes were excluded following NLP classification of pneumonia status as 'negative' or 'unknown'. Subtyping of 83,387 episodes identified: community acquired (54.5%), hospital-acquired (20%), aspiration-related (10.7%), healthcare-acquired (5%), ventilator-associated (0.4%) cases, and 9.4% were not classifiable by the algorithm.\\n\\n\\nCONCLUSION\\nStudy outcome indicated capacity to achieve electronic pneumonia subtype classification based on interrogation of big data available in the EHR. Examination of portability of the algorithm to achieve rule-based pneumonia classification in other health systems remains to be explored.\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1801-2718\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1801-2718","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Identifying Pneumonia Sub-types from Electronic Health Records Using Rule-based Algorithms.
BACKGROUND
International Classification of Disease (ICD) coding for pneumonia classification is based on causal organism or use of general pneumonia codes, creating challenges for epidemiological evaluations, where pneumonia is standardly subtyped by settings, exposures and time of emergence. Pneumonia subtype classification requires data available in electronic health records (EHR), frequently in non-structured formats including radiological interpretation or clinical notes that complicate electronic classification.
OBJECTIVE
The current study undertook development of a rule-based pneumonia subtyping algorithm for stratifying pneumonia by the setting in which it emerged using information documented in the EHR.
METHODS
Pneumonia subtype classification was developed by interrogating patient information within the EHR of a large private Health System. ICD coding was mined in the EHR applying requirements for 'rule of two' pneumonia-related codes or one ICD code and radiologically-confirmed pneumonia validated by natural language processing and/or documented antibiotic prescriptions. A rule-based algorithm flow chart was created to support sub-classification based on features including symptomatic patient point of entry into the healthcare system timing of pneumonia emergence and identification of clinical, laboratory or medication orders that informed definition of the pneumonia sub-classification algorithm.
RESULTS
Data from 65,904 study-eligible patients with 91,998 episodes of pneumonia diagnoses documented by 380,509 encounters were analyzed, while 8,611 episodes were excluded following NLP classification of pneumonia status as 'negative' or 'unknown'. Subtyping of 83,387 episodes identified: community acquired (54.5%), hospital-acquired (20%), aspiration-related (10.7%), healthcare-acquired (5%), ventilator-associated (0.4%) cases, and 9.4% were not classifiable by the algorithm.
CONCLUSION
Study outcome indicated capacity to achieve electronic pneumonia subtype classification based on interrogation of big data available in the EHR. Examination of portability of the algorithm to achieve rule-based pneumonia classification in other health systems remains to be explored.
期刊介绍:
Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.