分数阶Schnakenberg模型的混沌动力学及其控制

IF 0.4 Q4 MATHEMATICS, APPLIED
Md. Jasim Uddin, S. M. Sohel Rana
{"title":"分数阶Schnakenberg模型的混沌动力学及其控制","authors":"Md. Jasim Uddin, S. M. Sohel Rana","doi":"10.5206/mase/15355","DOIUrl":null,"url":null,"abstract":"The Schnakenberg model is thought to be the Caputo fractional derivative. In order to create caputo fractional differential equations for the Schnakenberg model, a discretization process is first used. The fixed points in the model are categorized topologically. Then, we show analytically that, under certain parametric conditions, a Neimark-Sacker (NS) bifurcation and a Flip-bifurcation are supported by a fractional order Schnakenberg model. Using central manifold and bifurcation theory, we demonstrate the presence and direction of NS and Flip bifurcations. The parameter values and the initial conditions have been found to have a profound impact on the dynamical behavior of the fractional order Schnakenberg model. Numerical simulations are shown to demonstrate chaotic behaviors like bifurcations, phase portraits, period 2, 4, 7, 8, 10, 16, 20 and 40 orbits, invariant closed cycles, and attractive chaotic sets in addition to validating analytical conclusions.  In order to support the system’s chaotic characteristics, we also compute the maximal Lyapunov exponents and fractal dimensions quantitatively. Finally, the chaotic trajectory of the system is stopped using the OGY approach, hybrid control method, and state feedback method.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chaotic dynamics of the fractional order Schnakenberg model and its control\",\"authors\":\"Md. Jasim Uddin, S. M. Sohel Rana\",\"doi\":\"10.5206/mase/15355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schnakenberg model is thought to be the Caputo fractional derivative. In order to create caputo fractional differential equations for the Schnakenberg model, a discretization process is first used. The fixed points in the model are categorized topologically. Then, we show analytically that, under certain parametric conditions, a Neimark-Sacker (NS) bifurcation and a Flip-bifurcation are supported by a fractional order Schnakenberg model. Using central manifold and bifurcation theory, we demonstrate the presence and direction of NS and Flip bifurcations. The parameter values and the initial conditions have been found to have a profound impact on the dynamical behavior of the fractional order Schnakenberg model. Numerical simulations are shown to demonstrate chaotic behaviors like bifurcations, phase portraits, period 2, 4, 7, 8, 10, 16, 20 and 40 orbits, invariant closed cycles, and attractive chaotic sets in addition to validating analytical conclusions.  In order to support the system’s chaotic characteristics, we also compute the maximal Lyapunov exponents and fractal dimensions quantitatively. Finally, the chaotic trajectory of the system is stopped using the OGY approach, hybrid control method, and state feedback method.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/15355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/15355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Schnakenberg模型被认为是Caputo分数导数。为了为Schnakenberg模型创建caputo分数阶微分方程,首先使用了离散化过程。模型中的不动点按拓扑进行分类。然后,我们分析地证明,在一定的参数条件下,分数阶Schnakenberg模型支持Neimark-Sacker(NS)分岔和Flip分岔。利用中心流形和分岔理论,我们证明了NS和Flip分岔的存在性和方向性。参数值和初始条件对分数阶Schnakenberg模型的动力学行为有着深远的影响。数值模拟表明,除了验证分析结论外,还展示了混沌行为,如分叉、相位肖像、周期2、4、7、8、10、16、20和40轨道、不变闭环和有吸引力的混沌集。为了支持系统的混沌特性,我们还定量计算了最大李雅普诺夫指数和分形维数。最后,采用OGY方法、混合控制方法和状态反馈方法对系统的混沌轨迹进行了抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic dynamics of the fractional order Schnakenberg model and its control
The Schnakenberg model is thought to be the Caputo fractional derivative. In order to create caputo fractional differential equations for the Schnakenberg model, a discretization process is first used. The fixed points in the model are categorized topologically. Then, we show analytically that, under certain parametric conditions, a Neimark-Sacker (NS) bifurcation and a Flip-bifurcation are supported by a fractional order Schnakenberg model. Using central manifold and bifurcation theory, we demonstrate the presence and direction of NS and Flip bifurcations. The parameter values and the initial conditions have been found to have a profound impact on the dynamical behavior of the fractional order Schnakenberg model. Numerical simulations are shown to demonstrate chaotic behaviors like bifurcations, phase portraits, period 2, 4, 7, 8, 10, 16, 20 and 40 orbits, invariant closed cycles, and attractive chaotic sets in addition to validating analytical conclusions.  In order to support the system’s chaotic characteristics, we also compute the maximal Lyapunov exponents and fractal dimensions quantitatively. Finally, the chaotic trajectory of the system is stopped using the OGY approach, hybrid control method, and state feedback method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信