二维微通道流体动力学入口区的滑移流分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ayhan Nazmi Ilikan, R. Aydin
{"title":"二维微通道流体动力学入口区的滑移流分析","authors":"Ayhan Nazmi Ilikan, R. Aydin","doi":"10.18186/thermal.1300390","DOIUrl":null,"url":null,"abstract":"Two-dimensional developing flow in the entrance of a microchannel has been studied numer-ically. Due to its nature, a microchannel can be used in tight space applications and the length of channel can get very small values. Furthermore, if the hydrodynamic development length of flow in microchannel has comparably the same value with the channel length, the channel entrance parameters play critical role on the flow performance of a microscale channel. Lattice Boltzmann Method (LBM) was considered for studying and simulating the developing slip flows through a rectangular microchannel. A unique computational code for this study was developed by using LBM. The slip velocity boundary condition along with Knudsen number values in the slip flow regime was used for this model. The bounce-back boundary condition was considered at the top and bottom walls of the microchannel. The effects of the Reyn-olds numbers (1-100) and Knudsen numbers (0.001, 0.01, 0.1) on the hydrodynamic entrance length has been examined. The numerical results have been compared with the previous stud-ies in the literature and the similarities have been found satisfactory. The entrance length is found to be increasing with the increase of Reynolds and Knudsen numbers. A correlation for hydrodynamic development length as a function of Knudsen and Reynolds numbers was obtained by using the data extracted from LBM simulations performed in this study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the slip flow in the hydrodynamic entrance region of a 2D microchannel\",\"authors\":\"Ayhan Nazmi Ilikan, R. Aydin\",\"doi\":\"10.18186/thermal.1300390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional developing flow in the entrance of a microchannel has been studied numer-ically. Due to its nature, a microchannel can be used in tight space applications and the length of channel can get very small values. Furthermore, if the hydrodynamic development length of flow in microchannel has comparably the same value with the channel length, the channel entrance parameters play critical role on the flow performance of a microscale channel. Lattice Boltzmann Method (LBM) was considered for studying and simulating the developing slip flows through a rectangular microchannel. A unique computational code for this study was developed by using LBM. The slip velocity boundary condition along with Knudsen number values in the slip flow regime was used for this model. The bounce-back boundary condition was considered at the top and bottom walls of the microchannel. The effects of the Reyn-olds numbers (1-100) and Knudsen numbers (0.001, 0.01, 0.1) on the hydrodynamic entrance length has been examined. The numerical results have been compared with the previous stud-ies in the literature and the similarities have been found satisfactory. The entrance length is found to be increasing with the increase of Reynolds and Knudsen numbers. A correlation for hydrodynamic development length as a function of Knudsen and Reynolds numbers was obtained by using the data extracted from LBM simulations performed in this study.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1300390\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300390","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

对微通道入口处的二维发展流动进行了数值研究。由于其性质,微通道可以用于狭小空间的应用,并且通道的长度可以得到非常小的值。此外,如果微通道中流动的流体动力学发展长度与通道长度具有相同的值,则通道入口参数对微尺度通道的流动性能起着关键作用。采用格子Boltzmann方法研究和模拟了矩形微通道中滑移流的发展过程。使用LBM为本研究开发了一个独特的计算代码。该模型使用了滑移速度边界条件以及滑移流态中的克努森数。在微通道的顶壁和底壁处考虑了反弹边界条件。研究了雷诺数(1-100)和克努森数(0.001、0.01、0.1)对流体动力学入口长度的影响。将数值结果与文献中先前的研究进行了比较,发现相似性令人满意。入口长度随着雷诺数和克努森数的增加而增加。通过使用从本研究中进行的LBM模拟中提取的数据,获得了作为克努森数和雷诺数函数的流体动力学发展长度的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the slip flow in the hydrodynamic entrance region of a 2D microchannel
Two-dimensional developing flow in the entrance of a microchannel has been studied numer-ically. Due to its nature, a microchannel can be used in tight space applications and the length of channel can get very small values. Furthermore, if the hydrodynamic development length of flow in microchannel has comparably the same value with the channel length, the channel entrance parameters play critical role on the flow performance of a microscale channel. Lattice Boltzmann Method (LBM) was considered for studying and simulating the developing slip flows through a rectangular microchannel. A unique computational code for this study was developed by using LBM. The slip velocity boundary condition along with Knudsen number values in the slip flow regime was used for this model. The bounce-back boundary condition was considered at the top and bottom walls of the microchannel. The effects of the Reyn-olds numbers (1-100) and Knudsen numbers (0.001, 0.01, 0.1) on the hydrodynamic entrance length has been examined. The numerical results have been compared with the previous stud-ies in the literature and the similarities have been found satisfactory. The entrance length is found to be increasing with the increase of Reynolds and Knudsen numbers. A correlation for hydrodynamic development length as a function of Knudsen and Reynolds numbers was obtained by using the data extracted from LBM simulations performed in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信