M. Bhargava, J. Cremona, T. Fisher, Stevan Gajović
{"title":"次多项式n$n$ / Zp${\\mathbb {Z}}_p$在Qp${\\mathbb {Q}}_p$中恰好有r$r$根的密度","authors":"M. Bhargava, J. Cremona, T. Fisher, Stevan Gajović","doi":"10.1112/plms.12438","DOIUrl":null,"url":null,"abstract":"We determine the probability that a random polynomial of degree n$n$ over Zp${\\mathbb {Z}}_p$ has exactly r$r$ roots in Qp${\\mathbb {Q}}_p$ , and show that it is given by a rational function of p$p$ that is invariant under replacing p$p$ by 1/p$1/p$ .","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The density of polynomials of degree n$n$ over Zp${\\\\mathbb {Z}}_p$ having exactly r$r$ roots in Qp${\\\\mathbb {Q}}_p$\",\"authors\":\"M. Bhargava, J. Cremona, T. Fisher, Stevan Gajović\",\"doi\":\"10.1112/plms.12438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the probability that a random polynomial of degree n$n$ over Zp${\\\\mathbb {Z}}_p$ has exactly r$r$ roots in Qp${\\\\mathbb {Q}}_p$ , and show that it is given by a rational function of p$p$ that is invariant under replacing p$p$ by 1/p$1/p$ .\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12438\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12438","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The density of polynomials of degree n$n$ over Zp${\mathbb {Z}}_p$ having exactly r$r$ roots in Qp${\mathbb {Q}}_p$
We determine the probability that a random polynomial of degree n$n$ over Zp${\mathbb {Z}}_p$ has exactly r$r$ roots in Qp${\mathbb {Q}}_p$ , and show that it is given by a rational function of p$p$ that is invariant under replacing p$p$ by 1/p$1/p$ .
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.