对偶双曲Jacobthal数的一参数推广

IF 0.4 Q4 MATHEMATICS
D. Bród, A. Szynal-Liana, I. Włoch
{"title":"对偶双曲Jacobthal数的一参数推广","authors":"D. Bród, A. Szynal-Liana, I. Włoch","doi":"10.2478/amsil-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers\",\"authors\":\"D. Bród, A. Szynal-Liana, I. Włoch\",\"doi\":\"10.2478/amsil-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了对偶双曲Jacobthal数的一参数推广——对偶双曲r-Jacobthal号。我们给出了它们的一些性质,其中包括Binet公式、Catalan、Cassini和d’Ocagne恒等式。此外,我们还给出了这些数的生成函数和求和公式。给出的结果是对偶双曲Jacobthal数结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers
Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信