{"title":"对偶双曲Jacobthal数的一参数推广","authors":"D. Bród, A. Szynal-Liana, I. Włoch","doi":"10.2478/amsil-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers\",\"authors\":\"D. Bród, A. Szynal-Liana, I. Włoch\",\"doi\":\"10.2478/amsil-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
One-Parameter Generalization of Dual-Hyperbolic Jacobsthal Numbers
Abstract In this paper, we introduce one-parameter generalization of dual-hyperbolic Jacobsthal numbers – dual-hyperbolic r-Jacobsthal numbers. We present some properties of them, among others the Binet formula, Catalan, Cassini, and d’Ocagne identities. Moreover, we give the generating function and summation formula for these numbers. The presented results are a generalization of the results for the dual-hyperbolic Jacobsthal numbers.