壳聚糖/生物活性玻璃/明胶纳米颗粒包被PCL聚合物支架的制备与表征

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
Gholamreza Savari Kozehkonan, M. Salehi, Saeed Farzamfar, H. Ghanbari, M. Adabi, A. Amani
{"title":"壳聚糖/生物活性玻璃/明胶纳米颗粒包被PCL聚合物支架的制备与表征","authors":"Gholamreza Savari Kozehkonan, M. Salehi, Saeed Farzamfar, H. Ghanbari, M. Adabi, A. Amani","doi":"10.22038/NMJ.2019.06.000009","DOIUrl":null,"url":null,"abstract":"Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using scanning electron microscopy and Fourier-transform infrared spectroscopy (FTIR). Results: The size of the prepared BG and GEL NPs was estimated to be 400 and 234 nanometers, respectively. The porosity and contact angle of PCL/CH/GEL NPs/BG was 74% and 72°, respectively. Weight loss and electron microscopy evaluations indicated the improved degradation rate of the scaffolds and spreading tendency of the cells on the scaffolds when modified as compared to the scaffolds that were purely obtained from PCL. In addition, the in-vitro studies revealed that the MG-63 cells cultured on the PCL/CH/GEL NPs/BG scaffolds showed improved cell proliferation more significantly compared to the scaffolds obtained from PCL, PCL/CH/GEL NPs, PCL/CH, and PCL/GEL NPs. Mechanical examinations also showed that PCL/CH/GEL/BG scaffolds had the highest mechanical strength compared to other groups (i.e., 4.66 Mpa). Cell viability was estimated to be 96.7%, and the alizarin red test indicated the significant improvement of mineralization in the PCL/CH/GEL NP group. Conclusion: According to the results, the PCL scaffolds that were modified by CH/GEL NPs/BG had the high potency to be used as bone tissue engineering scaffolds.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering\",\"authors\":\"Gholamreza Savari Kozehkonan, M. Salehi, Saeed Farzamfar, H. Ghanbari, M. Adabi, A. Amani\",\"doi\":\"10.22038/NMJ.2019.06.000009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using scanning electron microscopy and Fourier-transform infrared spectroscopy (FTIR). Results: The size of the prepared BG and GEL NPs was estimated to be 400 and 234 nanometers, respectively. The porosity and contact angle of PCL/CH/GEL NPs/BG was 74% and 72°, respectively. Weight loss and electron microscopy evaluations indicated the improved degradation rate of the scaffolds and spreading tendency of the cells on the scaffolds when modified as compared to the scaffolds that were purely obtained from PCL. In addition, the in-vitro studies revealed that the MG-63 cells cultured on the PCL/CH/GEL NPs/BG scaffolds showed improved cell proliferation more significantly compared to the scaffolds obtained from PCL, PCL/CH/GEL NPs, PCL/CH, and PCL/GEL NPs. Mechanical examinations also showed that PCL/CH/GEL/BG scaffolds had the highest mechanical strength compared to other groups (i.e., 4.66 Mpa). Cell viability was estimated to be 96.7%, and the alizarin red test indicated the significant improvement of mineralization in the PCL/CH/GEL NP group. Conclusion: According to the results, the PCL scaffolds that were modified by CH/GEL NPs/BG had the high potency to be used as bone tissue engineering scaffolds.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2019.06.000009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2019.06.000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

目的:本研究旨在制备具有高孔隙率和孔互连性的聚己内酯(PCL)支架,以利用热诱导相分离(TIPS)技术复制天然骨的微观结构。材料和方法:用壳聚糖(CH)、生物活性玻璃(BG)和明胶纳米颗粒(GEL-NP)涂覆支架,并使用扫描电子显微镜和傅里叶变换红外光谱(FTIR)进行评估。结果:制备的BG和GEL NP的尺寸估计分别为400和234纳米。PCL/CH/GEL NPs/BG的孔隙率和接触角分别为74%和72°。重量损失和电子显微镜评估表明,与纯从PCL获得的支架相比,当修饰时,支架的降解率和细胞在支架上的扩散趋势得到改善。此外,体外研究显示,与从PCL、PCL/CH/GEL NPs、PCL/CH和PCL/GEL NPs获得的支架相比,在PCL/CH/GEL NPs/BG支架上培养的MG-63细胞显示出更显著的细胞增殖改善。机械检查还显示,与其他组相比,PCL/CH/GEL/BG支架具有最高的机械强度(即4.66Mpa)。细胞活力估计为96.7%,茜素红测试表明PCL/CH/GEL NP组矿化显著改善。结论:CH/GEL NPs/BG修饰的PCL支架具有良好的骨组织工程支架性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using scanning electron microscopy and Fourier-transform infrared spectroscopy (FTIR). Results: The size of the prepared BG and GEL NPs was estimated to be 400 and 234 nanometers, respectively. The porosity and contact angle of PCL/CH/GEL NPs/BG was 74% and 72°, respectively. Weight loss and electron microscopy evaluations indicated the improved degradation rate of the scaffolds and spreading tendency of the cells on the scaffolds when modified as compared to the scaffolds that were purely obtained from PCL. In addition, the in-vitro studies revealed that the MG-63 cells cultured on the PCL/CH/GEL NPs/BG scaffolds showed improved cell proliferation more significantly compared to the scaffolds obtained from PCL, PCL/CH/GEL NPs, PCL/CH, and PCL/GEL NPs. Mechanical examinations also showed that PCL/CH/GEL/BG scaffolds had the highest mechanical strength compared to other groups (i.e., 4.66 Mpa). Cell viability was estimated to be 96.7%, and the alizarin red test indicated the significant improvement of mineralization in the PCL/CH/GEL NP group. Conclusion: According to the results, the PCL scaffolds that were modified by CH/GEL NPs/BG had the high potency to be used as bone tissue engineering scaffolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信