图的楔形和的无线电数的进一步结果

4区 数学 Q4 Mathematics
Asim Naseem, K. Shabbir, M. Ramzan
{"title":"图的楔形和的无线电数的进一步结果","authors":"Asim Naseem, K. Shabbir, M. Ramzan","doi":"10.61091/ars156-02","DOIUrl":null,"url":null,"abstract":"Let \\(G\\) be a simple connected graph with vertex set \\(V\\) and diameter \\(d\\). An injective function \\(c: V\\rightarrow \\{1,2,3,\\ldots\\}\\) is called a {radio labeling} of \\(G\\) if \\({|c(x)-c(y)|+d(x,y)\\geq d+1}\\) for all distinct \\(x,y\\in V\\), where \\(d(x,y)\\) is the distance between vertices \\(x\\) and \\(y\\). The largest number in the range of \\(c\\) is called the span of the labeling \\(c\\). The radio number of \\(G\\) is the minimum span taken over all radio labelings of \\(G\\). For a fixed vertex \\(z\\) of \\(G\\), the sequence \\((l_1,l_2,\\ldots,l_r)\\) is called the level tuple of \\(G\\), where \\(l_i\\) is the number of vertices whose distance from \\(z\\) is \\(i\\). Let \\(J^k(l_1,l_2,\\ldots,l_r)\\) be the wedge sum (i.e., one vertex union) of \\(k\\geq2\\) graphs having same level tuple \\((l_1,l_2,\\ldots,l_r)\\). Let \\(J\\left(\\frac{l_1}{l'_1},\\frac{l_2}{l'_2},\\ldots,\\frac{l_r}{l'_r}\\right)\\) be the wedge sum of two graphs of same order, having level tuples \\((l_1,l_2,\\ldots,l_r)\\) and \\((l'_1,l'_2,\\ldots,l'_r)\\). In this paper, we compute the radio number for some sub-families of \\(J^k(l_1,l_2,\\ldots,l_r)\\) and \\(J\\left(\\frac{l_1}{l'_1},\\frac{l_2}{l'_2},\\ldots,\\frac{l_r}{l'_r}\\right)\\).","PeriodicalId":55575,"journal":{"name":"Ars Combinatoria","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further Results on Radio Number of Wedge sum of Graphs\",\"authors\":\"Asim Naseem, K. Shabbir, M. Ramzan\",\"doi\":\"10.61091/ars156-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(G\\\\) be a simple connected graph with vertex set \\\\(V\\\\) and diameter \\\\(d\\\\). An injective function \\\\(c: V\\\\rightarrow \\\\{1,2,3,\\\\ldots\\\\}\\\\) is called a {radio labeling} of \\\\(G\\\\) if \\\\({|c(x)-c(y)|+d(x,y)\\\\geq d+1}\\\\) for all distinct \\\\(x,y\\\\in V\\\\), where \\\\(d(x,y)\\\\) is the distance between vertices \\\\(x\\\\) and \\\\(y\\\\). The largest number in the range of \\\\(c\\\\) is called the span of the labeling \\\\(c\\\\). The radio number of \\\\(G\\\\) is the minimum span taken over all radio labelings of \\\\(G\\\\). For a fixed vertex \\\\(z\\\\) of \\\\(G\\\\), the sequence \\\\((l_1,l_2,\\\\ldots,l_r)\\\\) is called the level tuple of \\\\(G\\\\), where \\\\(l_i\\\\) is the number of vertices whose distance from \\\\(z\\\\) is \\\\(i\\\\). Let \\\\(J^k(l_1,l_2,\\\\ldots,l_r)\\\\) be the wedge sum (i.e., one vertex union) of \\\\(k\\\\geq2\\\\) graphs having same level tuple \\\\((l_1,l_2,\\\\ldots,l_r)\\\\). Let \\\\(J\\\\left(\\\\frac{l_1}{l'_1},\\\\frac{l_2}{l'_2},\\\\ldots,\\\\frac{l_r}{l'_r}\\\\right)\\\\) be the wedge sum of two graphs of same order, having level tuples \\\\((l_1,l_2,\\\\ldots,l_r)\\\\) and \\\\((l'_1,l'_2,\\\\ldots,l'_r)\\\\). In this paper, we compute the radio number for some sub-families of \\\\(J^k(l_1,l_2,\\\\ldots,l_r)\\\\) and \\\\(J\\\\left(\\\\frac{l_1}{l'_1},\\\\frac{l_2}{l'_2},\\\\ldots,\\\\frac{l_r}{l'_r}\\\\right)\\\\).\",\"PeriodicalId\":55575,\"journal\":{\"name\":\"Ars Combinatoria\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Combinatoria\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.61091/ars156-02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Combinatoria","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61091/ars156-02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设\(G\)为一个顶点集\(V\),直径\(d\)的简单连通图。对于所有不同的\(x,y\in V\),一个内射函数{}\(c: V\rightarrow \{1,2,3,\ldots\}\)被称为\(G\)的,如果\({|c(x)-c(y)|+d(x,y)\geq d+1}\),其中\(d(x,y)\)是顶点\(x\)和\(y\)之间的距离。在\(c\)范围内最大的数称为标注的跨度\(c\)。\(G\)的无线电号码是\(G\)的所有无线电标签所占用的最小跨度。对于\(G\)的一个固定顶点\(z\),序列\((l_1,l_2,\ldots,l_r)\)被称为\(G\)的层次元组,其中\(l_i\)是到\(z\)的距离为\(i\)的顶点的个数。设\(J^k(l_1,l_2,\ldots,l_r)\)为具有相同级别元组\((l_1,l_2,\ldots,l_r)\)的\(k\geq2\)图的楔形和(即一个顶点并集)。设\(J\left(\frac{l_1}{l'_1},\frac{l_2}{l'_2},\ldots,\frac{l_r}{l'_r}\right)\)为两个具有级别元组\((l_1,l_2,\ldots,l_r)\)和\((l'_1,l'_2,\ldots,l'_r)\)的同阶图的楔形和。本文计算了\(J^k(l_1,l_2,\ldots,l_r)\)和\(J\left(\frac{l_1}{l'_1},\frac{l_2}{l'_2},\ldots,\frac{l_r}{l'_r}\right)\)的一些子族的无线电数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further Results on Radio Number of Wedge sum of Graphs
Let \(G\) be a simple connected graph with vertex set \(V\) and diameter \(d\). An injective function \(c: V\rightarrow \{1,2,3,\ldots\}\) is called a {radio labeling} of \(G\) if \({|c(x)-c(y)|+d(x,y)\geq d+1}\) for all distinct \(x,y\in V\), where \(d(x,y)\) is the distance between vertices \(x\) and \(y\). The largest number in the range of \(c\) is called the span of the labeling \(c\). The radio number of \(G\) is the minimum span taken over all radio labelings of \(G\). For a fixed vertex \(z\) of \(G\), the sequence \((l_1,l_2,\ldots,l_r)\) is called the level tuple of \(G\), where \(l_i\) is the number of vertices whose distance from \(z\) is \(i\). Let \(J^k(l_1,l_2,\ldots,l_r)\) be the wedge sum (i.e., one vertex union) of \(k\geq2\) graphs having same level tuple \((l_1,l_2,\ldots,l_r)\). Let \(J\left(\frac{l_1}{l'_1},\frac{l_2}{l'_2},\ldots,\frac{l_r}{l'_r}\right)\) be the wedge sum of two graphs of same order, having level tuples \((l_1,l_2,\ldots,l_r)\) and \((l'_1,l'_2,\ldots,l'_r)\). In this paper, we compute the radio number for some sub-families of \(J^k(l_1,l_2,\ldots,l_r)\) and \(J\left(\frac{l_1}{l'_1},\frac{l_2}{l'_2},\ldots,\frac{l_r}{l'_r}\right)\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Combinatoria
Ars Combinatoria 数学-数学
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信