量子群的Drinfeld二重、倾斜模和与复反射群相关的$\mathbb Z$模数据

IF 0.6 2区 数学 Q3 MATHEMATICS
Abel Lacabanne
{"title":"量子群的Drinfeld二重、倾斜模和与复反射群相关的$\\mathbb Z$模数据","authors":"Abel Lacabanne","doi":"10.4171/JCA/45","DOIUrl":null,"url":null,"abstract":"Generalizing Lusztig's work, Malle as associated to any imprimitive complex reflection $W$ group a set of \"unipotent characters\", which are in bijection of the usual unipotent characters of the associated finite reductive group if $W$ is a Weyl group. He also obtained a partition of these characters into families and associated to each family a $\\mathbb{Z}$-modular datum. We construct a categorification of some of these data, by studying the category of tilting modules of the Drinfeld double of the quantum enveloping algebra of the Borel of a simple complex Lie algebra.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Drinfeld double of quantum groups, tilting modules and $\\\\mathbb Z$-modular data associated to complex reflection groups\",\"authors\":\"Abel Lacabanne\",\"doi\":\"10.4171/JCA/45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalizing Lusztig's work, Malle as associated to any imprimitive complex reflection $W$ group a set of \\\"unipotent characters\\\", which are in bijection of the usual unipotent characters of the associated finite reductive group if $W$ is a Weyl group. He also obtained a partition of these characters into families and associated to each family a $\\\\mathbb{Z}$-modular datum. We construct a categorification of some of these data, by studying the category of tilting modules of the Drinfeld double of the quantum enveloping algebra of the Borel of a simple complex Lie algebra.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JCA/45\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JCA/45","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

推广Lusztig的工作,Malle将任意非原复反射$W$群关联为一组“单幂元”,当$W$是Weyl群时,这些单幂元是关联有限约化群通常的单幂元的对射。他还获得了这些字符的族划分,并将每个族关联到一个$\mathbb{Z}$-模数据。我们通过研究一个简单复李代数的Borel的量子包络代数的德林菲尔德双元的倾斜模的范畴,构造了其中一些数据的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drinfeld double of quantum groups, tilting modules and $\mathbb Z$-modular data associated to complex reflection groups
Generalizing Lusztig's work, Malle as associated to any imprimitive complex reflection $W$ group a set of "unipotent characters", which are in bijection of the usual unipotent characters of the associated finite reductive group if $W$ is a Weyl group. He also obtained a partition of these characters into families and associated to each family a $\mathbb{Z}$-modular datum. We construct a categorification of some of these data, by studying the category of tilting modules of the Drinfeld double of the quantum enveloping algebra of the Borel of a simple complex Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信