{"title":"特殊流形的Albanese映射:一个修正","authors":"Frederic Campana","doi":"10.5802/aif.3563","DOIUrl":null,"url":null,"abstract":"We show that any fibration of a 'special' compact K{\\\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Albanese map of special manifolds: a correction\",\"authors\":\"Frederic Campana\",\"doi\":\"10.5802/aif.3563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any fibration of a 'special' compact K{\\\\\\\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\\\\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that any fibration of a 'special' compact K{\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.