特殊流形的Albanese映射:一个修正

Pub Date : 2021-09-15 DOI:10.5802/aif.3563
Frederic Campana
{"title":"特殊流形的Albanese映射:一个修正","authors":"Frederic Campana","doi":"10.5802/aif.3563","DOIUrl":null,"url":null,"abstract":"We show that any fibration of a 'special' compact K{\\\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Albanese map of special manifolds: a correction\",\"authors\":\"Frederic Campana\",\"doi\":\"10.5802/aif.3563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any fibration of a 'special' compact K{\\\\\\\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\\\\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了“特殊”紧致K{\“a}hler流形X在阿贝尔变种上的任何fibration在余维1中都没有多重纤维。当$\kappa$(X)=0时,这一陈述加强并扩展了Kawamata和Viehweg的先前结果。这也纠正了[2],5.3中给出的不完整的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Albanese map of special manifolds: a correction
We show that any fibration of a 'special' compact K{\"a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $\kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信