{"title":"TCO/SnO2/CdS/CdTe太阳电池的优化与数值模拟","authors":"P. Khaledi, M. Behboudnia, M. Karimi","doi":"10.1155/2023/7184080","DOIUrl":null,"url":null,"abstract":"Due to the excellent performance of the CdTe solar cells, research is ongoing to increase the efficiency of these cells. The first purpose of this study is to increase the accuracy of the physical parameters of a solar cell in the electron ̶hole production rate equation. In previous studies, this section was neglected because of using only ready-made software. Simulations were performed using a one-dimensional diffusion model in MATLAB and Maple software. Then, in theory, we simulated cadmium telluride-based layered solar cells for the first time without using ready-made software and with coding in MATLAB and Maple software. We designed and optimized the thickness of the layers in solar cells in detail. Then we studied the effect of layer thickness on the short-circuit current (Jsc), open-circuit voltage (Voc), filling factor (FF), and its efficiency. It is found that the efficiency of solar cells layered with TCO/SnO2/CdS/CdTe layers is as follows: the thickness of the TCO layer is 0.1 μm, that of the SnO2 layer is equal to 0.1 μm, that of the CdS layer as the window layer is 0.1 μm and the thickness of the CdTe layer as the absorber layer is 3.9 μm. The efficiency of the solar cell with the TCO/SnO2/CdS/CdTe structure increases significantly and reaches a maximum value of more than 20%.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization and Numerical Modeling of TCO/SnO2/CdS/CdTe Solar Cells\",\"authors\":\"P. Khaledi, M. Behboudnia, M. Karimi\",\"doi\":\"10.1155/2023/7184080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the excellent performance of the CdTe solar cells, research is ongoing to increase the efficiency of these cells. The first purpose of this study is to increase the accuracy of the physical parameters of a solar cell in the electron ̶hole production rate equation. In previous studies, this section was neglected because of using only ready-made software. Simulations were performed using a one-dimensional diffusion model in MATLAB and Maple software. Then, in theory, we simulated cadmium telluride-based layered solar cells for the first time without using ready-made software and with coding in MATLAB and Maple software. We designed and optimized the thickness of the layers in solar cells in detail. Then we studied the effect of layer thickness on the short-circuit current (Jsc), open-circuit voltage (Voc), filling factor (FF), and its efficiency. It is found that the efficiency of solar cells layered with TCO/SnO2/CdS/CdTe layers is as follows: the thickness of the TCO layer is 0.1 μm, that of the SnO2 layer is equal to 0.1 μm, that of the CdS layer as the window layer is 0.1 μm and the thickness of the CdTe layer as the absorber layer is 3.9 μm. The efficiency of the solar cell with the TCO/SnO2/CdS/CdTe structure increases significantly and reaches a maximum value of more than 20%.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7184080\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/7184080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Optimization and Numerical Modeling of TCO/SnO2/CdS/CdTe Solar Cells
Due to the excellent performance of the CdTe solar cells, research is ongoing to increase the efficiency of these cells. The first purpose of this study is to increase the accuracy of the physical parameters of a solar cell in the electron ̶hole production rate equation. In previous studies, this section was neglected because of using only ready-made software. Simulations were performed using a one-dimensional diffusion model in MATLAB and Maple software. Then, in theory, we simulated cadmium telluride-based layered solar cells for the first time without using ready-made software and with coding in MATLAB and Maple software. We designed and optimized the thickness of the layers in solar cells in detail. Then we studied the effect of layer thickness on the short-circuit current (Jsc), open-circuit voltage (Voc), filling factor (FF), and its efficiency. It is found that the efficiency of solar cells layered with TCO/SnO2/CdS/CdTe layers is as follows: the thickness of the TCO layer is 0.1 μm, that of the SnO2 layer is equal to 0.1 μm, that of the CdS layer as the window layer is 0.1 μm and the thickness of the CdTe layer as the absorber layer is 3.9 μm. The efficiency of the solar cell with the TCO/SnO2/CdS/CdTe structure increases significantly and reaches a maximum value of more than 20%.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.