求解一阶刚性微分方程的七步块多步方法

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
S. Gebregiorgis, H. Muleta
{"title":"求解一阶刚性微分方程的七步块多步方法","authors":"S. Gebregiorgis, H. Muleta","doi":"10.4314/mejs.v12i1.5","DOIUrl":null,"url":null,"abstract":"In this paper, a seven-step block method for the solution of first order initial value problem in ordinary differential equations based on collocation of the differential equation and interpolation of the approximate solution using power series have been formed. The method is found to be consistent and zero-stable which guarantees convergence. Finally, numerical examples are presented to illustrate the accuracy and effectiveness of the method. \n Keywords: Power series, Collocation, Interpolation, Block method, Stiff.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":"12 1","pages":"72-82"},"PeriodicalIF":0.3000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Seven-Step Block Multistep Method for the Solution of First Order Stiff Differential Equations\",\"authors\":\"S. Gebregiorgis, H. Muleta\",\"doi\":\"10.4314/mejs.v12i1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a seven-step block method for the solution of first order initial value problem in ordinary differential equations based on collocation of the differential equation and interpolation of the approximate solution using power series have been formed. The method is found to be consistent and zero-stable which guarantees convergence. Finally, numerical examples are presented to illustrate the accuracy and effectiveness of the method. \\n Keywords: Power series, Collocation, Interpolation, Block method, Stiff.\",\"PeriodicalId\":18948,\"journal\":{\"name\":\"Momona Ethiopian Journal of Science\",\"volume\":\"12 1\",\"pages\":\"72-82\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Momona Ethiopian Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/mejs.v12i1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mejs.v12i1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文在微分方程配置和幂级数近似解插值的基础上,提出了求解常微分方程一阶初值问题的七步法。该方法具有一致性和零稳定性,保证了算法的收敛性。最后通过数值算例说明了该方法的准确性和有效性。关键词:幂级数,配位,插值,块法,Stiff。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Seven-Step Block Multistep Method for the Solution of First Order Stiff Differential Equations
In this paper, a seven-step block method for the solution of first order initial value problem in ordinary differential equations based on collocation of the differential equation and interpolation of the approximate solution using power series have been formed. The method is found to be consistent and zero-stable which guarantees convergence. Finally, numerical examples are presented to illustrate the accuracy and effectiveness of the method.  Keywords: Power series, Collocation, Interpolation, Block method, Stiff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Momona Ethiopian Journal of Science
Momona Ethiopian Journal of Science MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信