基于布朗运动平均曲率漂移的浸没状态下不变控制系统模型

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Huang Ching-Peng
{"title":"基于布朗运动平均曲率漂移的浸没状态下不变控制系统模型","authors":"Huang Ching-Peng","doi":"10.1090/qam/1633","DOIUrl":null,"url":null,"abstract":"<p>Given a Riemannian submersion <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon upper M right-arrow upper N\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi : M \\to N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we construct a stochastic process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y colon-equal phi left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Y</mml:mi> <mml:mo>≔</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Y≔\\phi (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper G upper L left-parenthesis n right-parenthesis right-arrow upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi : GL(n) \\to GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose image is equivalent to the space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> positive definite matrices, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.</p> <p>By choosing the background metric via natural <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> action, we arrive at an invariant control system on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homogenous space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model of invariant control system using mean curvature drift from Brownian motion under submersions\",\"authors\":\"Huang Ching-Peng\",\"doi\":\"10.1090/qam/1633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a Riemannian submersion <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi colon upper M right-arrow upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi : M \\\\to N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we construct a stochastic process <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y colon-equal phi left-parenthesis upper X right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>Y</mml:mi> <mml:mo>≔</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Y≔\\\\phi (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi colon upper G upper L left-parenthesis n right-parenthesis right-arrow upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi : GL(n) \\\\to GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose image is equivalent to the space of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> positive definite matrices, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.</p> <p>By choosing the background metric via natural <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> action, we arrive at an invariant control system on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homogenous space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1633\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1633","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定黎曼浸没→ N\phi:M\到N,我们在M上构造了一个随机过程X X,使得图像Y≔ξ。模型例子是映射π:GL(n)→ G L(n)/O(n)\pi:GL(n)\到GL(n{S}_+(n,n),并且所述流具有确定性图像。我们能够显式地计算纤维的平均曲率(以及漂移项)。(i)在对角化下,以及(ii)在矩阵条目中,将平均曲率写成轨道对数体积的梯度。因此,我们能够在几个常见的齐次空间上明确地写下布朗运动,例如Poincaré的上半平面和s+(n,n)\mathcal上的Bures-Wasserstein几何{S}_+(n,n),在其上我们可以看到布朗运动的特征值过程,这让人想起戴森的布朗运动。通过自然GL(n)GL(n。我们研究了使用平均曲率流开发随机算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model of invariant control system using mean curvature drift from Brownian motion under submersions

Given a Riemannian submersion ϕ : M N \phi : M \to N , we construct a stochastic process X X on M M such that the image Y ϕ ( X ) Y≔\phi (X) is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping π : G L ( n ) G L ( n ) / O ( n ) \pi : GL(n) \to GL(n)/O(n) , whose image is equivalent to the space of n n -by- n n positive definite matrices, S + ( n , n ) \mathcal {S}_+(n,n) , and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on S + ( n , n ) \mathcal {S}_+(n,n) , on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.

By choosing the background metric via natural G L ( n ) GL(n) action, we arrive at an invariant control system on the G L ( n ) GL(n) -homogenous space G L ( n ) / O ( n ) GL(n)/O(n) . We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信