{"title":"基于布朗运动平均曲率漂移的浸没状态下不变控制系统模型","authors":"Huang Ching-Peng","doi":"10.1090/qam/1633","DOIUrl":null,"url":null,"abstract":"<p>Given a Riemannian submersion <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon upper M right-arrow upper N\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi : M \\to N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we construct a stochastic process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\"application/x-tex\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y colon-equal phi left-parenthesis upper X right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Y</mml:mi> <mml:mo>≔</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Y≔\\phi (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper G upper L left-parenthesis n right-parenthesis right-arrow upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\pi : GL(n) \\to GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose image is equivalent to the space of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> positive definite matrices, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.</p> <p>By choosing the background metric via natural <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> action, we arrive at an invariant control system on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homogenous space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.</p>","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model of invariant control system using mean curvature drift from Brownian motion under submersions\",\"authors\":\"Huang Ching-Peng\",\"doi\":\"10.1090/qam/1633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a Riemannian submersion <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"phi colon upper M right-arrow upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\phi : M \\\\to N</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we construct a stochastic process <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the image <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y colon-equal phi left-parenthesis upper X right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>Y</mml:mi> <mml:mo>≔</mml:mo> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">Y≔\\\\phi (X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"pi colon upper G upper L left-parenthesis n right-parenthesis right-arrow upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\pi : GL(n) \\\\to GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose image is equivalent to the space of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-by-<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> positive definite matrices, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper S Subscript plus Baseline left-parenthesis n comma n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">S</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {S}_+(n,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.</p> <p>By choosing the background metric via natural <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> action, we arrive at an invariant control system on the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-homogenous space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G upper L left-parenthesis n right-parenthesis slash upper O left-parenthesis n right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">GL(n)/O(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.</p>\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1633\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1633","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
给定黎曼浸没→ N\phi:M\到N,我们在M上构造了一个随机过程X X,使得图像Y≔ξ。模型例子是映射π:GL(n)→ G L(n)/O(n)\pi:GL(n)\到GL(n{S}_+(n,n),并且所述流具有确定性图像。我们能够显式地计算纤维的平均曲率(以及漂移项)。(i)在对角化下,以及(ii)在矩阵条目中,将平均曲率写成轨道对数体积的梯度。因此,我们能够在几个常见的齐次空间上明确地写下布朗运动,例如Poincaré的上半平面和s+(n,n)\mathcal上的Bures-Wasserstein几何{S}_+(n,n),在其上我们可以看到布朗运动的特征值过程,这让人想起戴森的布朗运动。通过自然GL(n)GL(n。我们研究了使用平均曲率流开发随机算法的可行性。
A model of invariant control system using mean curvature drift from Brownian motion under submersions
Given a Riemannian submersion ϕ:M→N\phi : M \to N, we construct a stochastic process XX on MM such that the image Y≔ϕ(X)Y≔\phi (X) is a (reversed, scaled) mean curvature flow of the fibers of the submersion. The model example is the mapping π:GL(n)→GL(n)/O(n)\pi : GL(n) \to GL(n)/O(n), whose image is equivalent to the space of nn-by-nn positive definite matrices, S+(n,n)\mathcal {S}_+(n,n), and the said flow has deterministic image. We are able to compute explicitly the mean curvature (and hence the drift term) of the fibers w.r.t. this map, (i) under diagonalization and (ii) in matrix entries, writing mean curvature as the gradient of log volume of orbits. As a consequence, we are able to write down Brownian motions explicitly on several common homogeneous spaces, such as Poincaré’s upper half plane and the Bures-Wasserstein geometry on S+(n,n)\mathcal {S}_+(n,n), on which we can see the eigenvalue processes of Brownian motion reminiscent of Dyson’s Brownian motion.
By choosing the background metric via natural GL(n)GL(n) action, we arrive at an invariant control system on the GL(n)GL(n)-homogenous space GL(n)/O(n)GL(n)/O(n). We investigate the feasibility of developing stochastic algorithms using the mean curvature flow.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.