递归抛光空间

IF 0.3 4区 数学 Q1 Arts and Humanities
Tyler Arant
{"title":"递归抛光空间","authors":"Tyler Arant","doi":"10.1007/s00153-023-00883-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the proper way to effectivize the notion of a Polish space. A theorem is proved that shows the recursive Polish space structure is not found in the effectively open subsets of a space <span>\\({\\mathcal {X}}\\)</span>, and we explore strong evidence that the effective structure is instead captured by the effectively open subsets of the product space <span>\\(\\mathbb {N}\\times {\\mathcal {X}}\\)</span>.\n</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-023-00883-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Recursive Polish spaces\",\"authors\":\"Tyler Arant\",\"doi\":\"10.1007/s00153-023-00883-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the proper way to effectivize the notion of a Polish space. A theorem is proved that shows the recursive Polish space structure is not found in the effectively open subsets of a space <span>\\\\({\\\\mathcal {X}}\\\\)</span>, and we explore strong evidence that the effective structure is instead captured by the effectively open subsets of the product space <span>\\\\(\\\\mathbb {N}\\\\times {\\\\mathcal {X}}\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-023-00883-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00883-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00883-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是如何有效运用波兰空间的概念。证明了递归波兰空间结构在空间\({\mathcal {X}}\)的有效开放子集中不存在,并探索了有效结构被积空间\(\mathbb {N}\times {\mathcal {X}}\)的有效开放子集捕获的有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Polish spaces

This paper is concerned with the proper way to effectivize the notion of a Polish space. A theorem is proved that shows the recursive Polish space structure is not found in the effectively open subsets of a space \({\mathcal {X}}\), and we explore strong evidence that the effective structure is instead captured by the effectively open subsets of the product space \(\mathbb {N}\times {\mathcal {X}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信