{"title":"具有Scherk型端的单周期极小曲面的范畴极限","authors":"Hao Chen, Peter Connor, Kevin Li","doi":"10.2140/pjm.2023.325.11","DOIUrl":null,"url":null,"abstract":"We construct families of embedded, singly periodic Karcher--Scherk saddle towers of any genus $g$ in the quotient with any even number $2n>2$ of almost parallel Scherk ends. A surface in such a family looks like $n$ parallel planes connected by $n-1+g$ small catenoid necks. In the limit, the family converges to an $n$-sheeted vertical plane with $n-1+g$ singular points termed nodes in the quotient. For the nodes to open up into catenoid necks, their locations must satisfy a set of balance equations whose solutions are given by the roots of Stieltjes polynomials. In a subsequent paper, we will construct minimal surfaces by gluing saddle towers with catenoid limits of saddle towers along their wings.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catenoid limits of singly periodic minimal surfaces with Scherk-type ends\",\"authors\":\"Hao Chen, Peter Connor, Kevin Li\",\"doi\":\"10.2140/pjm.2023.325.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct families of embedded, singly periodic Karcher--Scherk saddle towers of any genus $g$ in the quotient with any even number $2n>2$ of almost parallel Scherk ends. A surface in such a family looks like $n$ parallel planes connected by $n-1+g$ small catenoid necks. In the limit, the family converges to an $n$-sheeted vertical plane with $n-1+g$ singular points termed nodes in the quotient. For the nodes to open up into catenoid necks, their locations must satisfy a set of balance equations whose solutions are given by the roots of Stieltjes polynomials. In a subsequent paper, we will construct minimal surfaces by gluing saddle towers with catenoid limits of saddle towers along their wings.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.325.11\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.11","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Catenoid limits of singly periodic minimal surfaces with Scherk-type ends
We construct families of embedded, singly periodic Karcher--Scherk saddle towers of any genus $g$ in the quotient with any even number $2n>2$ of almost parallel Scherk ends. A surface in such a family looks like $n$ parallel planes connected by $n-1+g$ small catenoid necks. In the limit, the family converges to an $n$-sheeted vertical plane with $n-1+g$ singular points termed nodes in the quotient. For the nodes to open up into catenoid necks, their locations must satisfy a set of balance equations whose solutions are given by the roots of Stieltjes polynomials. In a subsequent paper, we will construct minimal surfaces by gluing saddle towers with catenoid limits of saddle towers along their wings.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.