非光滑非凸非凹最小-最大问题的最优性条件及生成对抗网络

IF 2.6 Q1 MATHEMATICS, APPLIED
Jie Jiang, Xiaojun Chen
{"title":"非光滑非凸非凹最小-最大问题的最优性条件及生成对抗网络","authors":"Jie Jiang, Xiaojun Chen","doi":"10.1137/22m1482238","DOIUrl":null,"url":null,"abstract":"This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr{\\'e}chet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimality Conditions for Nonsmooth Nonconvex-Nonconcave Min-Max Problems and Generative Adversarial Networks\",\"authors\":\"Jie Jiang, Xiaojun Chen\",\"doi\":\"10.1137/22m1482238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr{\\\\'e}chet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1482238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1482238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了机器学习和博弈中的一类非光滑非凸非凹最小-最大问题。首先给出了全局极大极小点和局部极大极小点存在的充分条件。其次,利用方向导数建立了局部极大极小点的一阶和二阶最优性条件。这些条件简化为具有Fr{\'e}chet导数的光滑最小-最大问题。我们将我们的理论结果应用于生成对抗网络(GANs),其中两个神经网络在游戏中相互竞争。用实例说明了新理论在训练gan中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality Conditions for Nonsmooth Nonconvex-Nonconcave Min-Max Problems and Generative Adversarial Networks
This paper considers a class of nonsmooth nonconvex-nonconcave min-max problems in machine learning and games. We first provide sufficient conditions for the existence of global minimax points and local minimax points. Next, we establish the first-order and second-order optimality conditions for local minimax points by using directional derivatives. These conditions reduce to smooth min-max problems with Fr{\'e}chet derivatives. We apply our theoretical results to generative adversarial networks (GANs) in which two neural networks contest with each other in a game. Examples are used to illustrate applications of the new theory for training GANs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信