J. Fahey-Gilmour, B. Dawson, P. Peeling, J. Heasman, B. Rogalski
{"title":"影响澳大利亚精英足球比赛结果因素的多因素分析:机器学习方法","authors":"J. Fahey-Gilmour, B. Dawson, P. Peeling, J. Heasman, B. Rogalski","doi":"10.2478/ijcss-2019-0020","DOIUrl":null,"url":null,"abstract":"Abstract In Australian football (AF), few studies have assessed combinations of pre- game factors and their relation to game outcomes (win/loss) in multivariable analyses. Further, previous research has mostly been confined to association-based linear approaches and post-game prediction, with limited assessment of predictive machine learning (ML) models in a pre-game setting. Therefore, our aim was to use ML techniques to predict game outcomes and produce a hierarchy of important (win/loss) variables. A total of 152 variables (79 absolute and 73 differentials) were used from the 2013–2018 Australian Football League (AFL) seasons. Various ML models were trained (cross-validation) on the 2013–2017 seasons with the–2018 season used as an independent test set. Model performance varied (66.5-73.3% test set accuracy), although the best model (glmnet – 73.3%) rivalled bookmaker predictions in the same period (70.9%). The glmnet model revealed measures of team quality (a player-based rating and a team-based) in their relative form as the most important variables for prediction. Models that contained in-built feature selection or could model non-linear relationships generally performed better. These findings show that AFL game outcomes can be predicted using ML methods and provide a hierarchy of predictors that maximize the chance of winning.","PeriodicalId":38466,"journal":{"name":"International Journal of Computer Science in Sport","volume":"18 1","pages":"100 - 124"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multifactorial analysis of factors influencing elite Australian football match outcomes: a machine learning approach\",\"authors\":\"J. Fahey-Gilmour, B. Dawson, P. Peeling, J. Heasman, B. Rogalski\",\"doi\":\"10.2478/ijcss-2019-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Australian football (AF), few studies have assessed combinations of pre- game factors and their relation to game outcomes (win/loss) in multivariable analyses. Further, previous research has mostly been confined to association-based linear approaches and post-game prediction, with limited assessment of predictive machine learning (ML) models in a pre-game setting. Therefore, our aim was to use ML techniques to predict game outcomes and produce a hierarchy of important (win/loss) variables. A total of 152 variables (79 absolute and 73 differentials) were used from the 2013–2018 Australian Football League (AFL) seasons. Various ML models were trained (cross-validation) on the 2013–2017 seasons with the–2018 season used as an independent test set. Model performance varied (66.5-73.3% test set accuracy), although the best model (glmnet – 73.3%) rivalled bookmaker predictions in the same period (70.9%). The glmnet model revealed measures of team quality (a player-based rating and a team-based) in their relative form as the most important variables for prediction. Models that contained in-built feature selection or could model non-linear relationships generally performed better. These findings show that AFL game outcomes can be predicted using ML methods and provide a hierarchy of predictors that maximize the chance of winning.\",\"PeriodicalId\":38466,\"journal\":{\"name\":\"International Journal of Computer Science in Sport\",\"volume\":\"18 1\",\"pages\":\"100 - 124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science in Sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijcss-2019-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijcss-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Multifactorial analysis of factors influencing elite Australian football match outcomes: a machine learning approach
Abstract In Australian football (AF), few studies have assessed combinations of pre- game factors and their relation to game outcomes (win/loss) in multivariable analyses. Further, previous research has mostly been confined to association-based linear approaches and post-game prediction, with limited assessment of predictive machine learning (ML) models in a pre-game setting. Therefore, our aim was to use ML techniques to predict game outcomes and produce a hierarchy of important (win/loss) variables. A total of 152 variables (79 absolute and 73 differentials) were used from the 2013–2018 Australian Football League (AFL) seasons. Various ML models were trained (cross-validation) on the 2013–2017 seasons with the–2018 season used as an independent test set. Model performance varied (66.5-73.3% test set accuracy), although the best model (glmnet – 73.3%) rivalled bookmaker predictions in the same period (70.9%). The glmnet model revealed measures of team quality (a player-based rating and a team-based) in their relative form as the most important variables for prediction. Models that contained in-built feature selection or could model non-linear relationships generally performed better. These findings show that AFL game outcomes can be predicted using ML methods and provide a hierarchy of predictors that maximize the chance of winning.