Esmeralda菠萝成熟过程中生物活性化合物的含量及其对抗氧化能力的贡献

IF 1.2 4区 生物学 Q2 Agricultural and Biological Sciences
Cindy Rosas Domínguez, J. Avila, S. Pareek, M. Ochoa, J. F. A. Zavala, E. Yahia, G. G. Aguilar
{"title":"Esmeralda菠萝成熟过程中生物活性化合物的含量及其对抗氧化能力的贡献","authors":"Cindy Rosas Domínguez, J. Avila, S. Pareek, M. Ochoa, J. F. A. Zavala, E. Yahia, G. G. Aguilar","doi":"10.5073/JABFQ.2018.091.009","DOIUrl":null,"url":null,"abstract":"Pineapple (Ananas comosus L.) cv Esmeralda is a commercially important fruit with many bioactive compounds like vitamin C, β-carotene, phenolic compounds and flavonoids, which have been reported only for fruits of commercial maturity. Our objective was to evaluate changes in concentration of main pineapple bioactives, their contribution to total antioxidant capacity and enzyme activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) during pineapple ripening. Fruits were grouped into four ripening stages (RS) according to their weight, size and percentage of yellow skin color (RS1: 100% green, RS2: up to 30% yellow, RS3: 30% - 75% yellow, RS4: 75% - 100% yellow). Vitamin C content initially increased, and decreased at RS4; β-carotene, phenolics and antioxidant capacity increased gradually. Phenolics contributed over 40% of antioxidant capacity, followed by vitamin C and β-carotene. Major phenolic compounds identified were gallic acid, catechin and epicatechin. PAL and POD activity increased with ripening and correlated with concentration of phenolics. No PPO activity was quantified. We concluded that ripening of pineapple cv Esmeralda alters the concentration of bioactive compounds. Phenolic compounds, particularly gallic acid, exert the most antioxidant capacity during all RS, even if other compounds have higher concentrations.","PeriodicalId":56276,"journal":{"name":"Journal of Applied Botany and Food Quality-Angewandte Botanik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv Esmeralda\",\"authors\":\"Cindy Rosas Domínguez, J. Avila, S. Pareek, M. Ochoa, J. F. A. Zavala, E. Yahia, G. G. Aguilar\",\"doi\":\"10.5073/JABFQ.2018.091.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pineapple (Ananas comosus L.) cv Esmeralda is a commercially important fruit with many bioactive compounds like vitamin C, β-carotene, phenolic compounds and flavonoids, which have been reported only for fruits of commercial maturity. Our objective was to evaluate changes in concentration of main pineapple bioactives, their contribution to total antioxidant capacity and enzyme activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) during pineapple ripening. Fruits were grouped into four ripening stages (RS) according to their weight, size and percentage of yellow skin color (RS1: 100% green, RS2: up to 30% yellow, RS3: 30% - 75% yellow, RS4: 75% - 100% yellow). Vitamin C content initially increased, and decreased at RS4; β-carotene, phenolics and antioxidant capacity increased gradually. Phenolics contributed over 40% of antioxidant capacity, followed by vitamin C and β-carotene. Major phenolic compounds identified were gallic acid, catechin and epicatechin. PAL and POD activity increased with ripening and correlated with concentration of phenolics. No PPO activity was quantified. We concluded that ripening of pineapple cv Esmeralda alters the concentration of bioactive compounds. Phenolic compounds, particularly gallic acid, exert the most antioxidant capacity during all RS, even if other compounds have higher concentrations.\",\"PeriodicalId\":56276,\"journal\":{\"name\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Botany and Food Quality-Angewandte Botanik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5073/JABFQ.2018.091.009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Botany and Food Quality-Angewandte Botanik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5073/JABFQ.2018.091.009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 17

摘要

菠萝(Ananas comosus L.) cv Esmeralda是一种重要的商业水果,含有许多生物活性化合物,如维生素C、β-胡萝卜素、酚类化合物和类黄酮,这些化合物仅在商业成熟的水果中被报道过。本研究的目的是评价菠萝主要生物活性物质浓度的变化,以及它们对菠萝总抗氧化能力和苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)和过氧化物酶(POD)酶活性的贡献。根据果实的重量、大小和果皮黄的百分比,将果实分为4个成熟阶段(RS1: 100%绿色,RS2:高达30%黄色,RS3: 30% ~ 75%黄色,RS4: 75% ~ 100%黄色)。维生素C含量在RS4时先升高后降低;β-胡萝卜素、酚类物质和抗氧化能力逐渐增强。酚类物质贡献了超过40%的抗氧化能力,其次是维生素C和β-胡萝卜素。鉴定出的主要酚类化合物为没食子酸、儿茶素和表儿茶素。PAL和POD活性随成熟而升高,且与酚类物质浓度相关。未定量PPO活性。我们得出结论,成熟的菠萝cv Esmeralda改变了生物活性化合物的浓度。酚类化合物,特别是没食子酸,在所有RS中发挥最大的抗氧化能力,即使其他化合物的浓度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv Esmeralda
Pineapple (Ananas comosus L.) cv Esmeralda is a commercially important fruit with many bioactive compounds like vitamin C, β-carotene, phenolic compounds and flavonoids, which have been reported only for fruits of commercial maturity. Our objective was to evaluate changes in concentration of main pineapple bioactives, their contribution to total antioxidant capacity and enzyme activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) during pineapple ripening. Fruits were grouped into four ripening stages (RS) according to their weight, size and percentage of yellow skin color (RS1: 100% green, RS2: up to 30% yellow, RS3: 30% - 75% yellow, RS4: 75% - 100% yellow). Vitamin C content initially increased, and decreased at RS4; β-carotene, phenolics and antioxidant capacity increased gradually. Phenolics contributed over 40% of antioxidant capacity, followed by vitamin C and β-carotene. Major phenolic compounds identified were gallic acid, catechin and epicatechin. PAL and POD activity increased with ripening and correlated with concentration of phenolics. No PPO activity was quantified. We concluded that ripening of pineapple cv Esmeralda alters the concentration of bioactive compounds. Phenolic compounds, particularly gallic acid, exert the most antioxidant capacity during all RS, even if other compounds have higher concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊介绍: The Journal of Applied Botany and Food Quality is the Open Access journal of the German Society for Quality Research on Plant Foods and the Section Applied Botany of the German Botanical Society. It provides a platform for scientists to disseminate recent results of applied plant research in plant physiology and plant ecology, plant biotechnology, plant breeding and cultivation, phytomedicine, plant nutrition, plant stress and resistance, plant microbiology, plant analysis (including -omics techniques), and plant food chemistry. The articles have a clear focus on botanical and plant quality aspects and contain new and innovative information based on state-of-the-art methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信